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Abstract

In the United States and elsewhere, risk assessment algorithms are
being used to help inform criminal justice decision-makers. A common
intent is to forecast an offender’s “future dangerousness.” Such algo-
rithms have been correctly criticized for potential unfairness, and there
is an active cottage industry trying to make repairs. In this paper, we
use counterfactual reasoning to consider the prospects for improved
fairness when members of a less privileged group are treated by a risk
algorithm as if they are members of a more privileged group. We com-
bine a machine learning classifier trained in a novel manner with an
optimal transport adjustment for the relevant joint probability distri-
butions, which together provide a constructive response to claims of
bias-in-bias-out. A key distinction is between fairness claims that are
empirically testable and fairness claims that are not. We then use con-
fusion tables and conformal prediction sets to evaluate achieved fairness
for projected risk. Our data are a random sample of 300,000 offenders
at their arraignments for a large metropolitan area in the United States
during which decisions to release or detain are made. We show that
substantial improvement in fairness can be achieved consistent with a
Pareto improvement for protected groups.

∗Cary Coglianese and Sandra Mayson provided many insightful suggestions for legal
conceptions of fairness and the prospect for criminal justice reform. Discussions with
Michael Kearns helped enormously to clarify the technical issues. We also received very
useful feedback from a group of researchers at MIT and Harvard who work on causal
inference. Special thanks go to Devavrat Shah.
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1 Introduction

The goal of fair algorithms remains a high priority among algorithm devel-
opers and the users of those algorithms. The literature is large, scattered,
and growing rapidly, but there seem to be three related conceptual clusters:
definitions of fairness and the tradeoffs that necessarily follow (Kleinberg et
al., 2017; Kroll et al., 2017, Corbett-Davies and Goel, 2018), claims of unbiq-
uitous unfairness (Harcourt, 2007; Star, 2014; Tonrey, 2014; Mullainathan,
2018), and a host of proposals for technical solutions (Kamiran and Calders,
2012; Hardt et al., 2016; Feldman et al. 2015; Zafer et al., 2017; Kearns et
al., 2018; Madras et al., 2018b; Lee et al., 2019; Johndrow and Lum, 2019;
Romano et al., 2019; Skeem and Lowenkamp, 2020). There are also useful
overviews that cut across these domains (Berk et. al. 2018; Baer et al.,
2020; Mitchell et al., 2021)

In this paper, we focus on risk assessments used in criminal justice set-
tings and propose a novel fix for algorithmic unfairness. Because the out-
comes of interest are classes, we concentrate on algorithmic classifiers. Un-
like most other work, the methods we offer are in part a response to a
political climate in which appearances can be more important than facts,
and political gridlock is a common consequence. To help break the grid-
lock, we seek a rigorous solution for algorithmic unfairness that is politically
acceptable to stakeholders. In so doing, we take a hard look at what risk
algorithms realistically can be expected to accomplish.

A recent paper by Berk and Elzarka (2020) provides a good start by
proposing a novel way a fair algorithm could be trained. But their ap-
proach lacks the formal framework we offer, which, in turn, solves problems
that the earlier work cannot. Building on a foundation of machine learning,
optimal transport (Hütter and Rigollet, 2020; Ni et al., 2021), and confor-
mal prediction sets (Vovk et al., 2005; 2009), we suggest a justification for
risk algorithms that treats members of a less “privileged” group as if they
were members of a more “privileged” group. We use Black offenders and
White offenders at their arraignments to illustrate our approach with the
forecasting target an arrest for a crime of violence. Many will claim that
Black offenders represent a less privileged protected group and White of-
fenders represent a more privileged protected group. Less freighted terms
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are “disadvantaged” and “advantaged” respectively.
Put a little too simply, if the performance of a risk algorithm is an accept-

able standard for the relevant class of White offenders, it is an acceptable
standard for the relevant class of Black offenders. This helps to underscore
that we propose altering how different protected groups are treated by a risk
algorithm. We are not proposing that an algorithm change protected group
membership. In causal language, our algorithmic intervention is manipula-
ble in a manner that could be undertaken in practice (Morgan and Winship,
2015: 438 – 441).

Whatever the words to describe the protected classes, there certainly
can be legitimate fairness concerns about this formulation. Treating Black
offenders as if they are White may be seen as inequality of treatment. We
argue later that Black offenders as a group can be, on the average, made
better off while White offenders as a group can be, on the average, not made
worse off. We can achieve a form of Pareto improvement.This is different
from the manner in which controversial interventions such as affirmative
action are designed.

We also respond constructively to a long standing ethical quandary in
U.S. criminal justice (Fisher and Kadane, 1983) commonly neglected in re-
cent overviews of fairness (Baer et al., 2020; Mitchell et al., 2021). Should
adjustments towards racial fairness use the treatment of White offenders as
the baseline, the treatment of Black offenders as the baseline, or some com-
promise between the two? Although in principle, equality may be achieved
using any shared fairness baseline, those who are made better off and those
who are made worse can differ dramatically. Unless an acceptable fairness
baseline for all is determined, there likely will be no agreement on how
fairness is to be achieved. Moreover, when the fairness baseline is not ad-
dressed along with adjustments toward fairness, one can arrive at fair results
in which everyone is made equally worse off. It is difficult to imagine that
stakeholders would find such a result palatable.

Finally, we sidestep a key difficulty that currently has not been ade-
quately resolved. A common assumption is that any disparity in treatment
or outcome between different protected groups is unfair and even discrim-
inatory. Gender provides an especially clear example. Men are dispropor-
tionately over-represented in prisons compared to women. But throughout
recorded history, men disproportionately have committed the vast majority
of violent crimes. Is the gender disparity in imprisonment explained solely
by unfairness? For criminal justice more broadly, finding comprehensive
explanations for racial disparities is at least as challenging (Hudson, 1989;
Yates, 1997). We do not pretend to have a resolution but offer instead what
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we hope is a politically acceptable approach.
However, treating Black offenders as if they are White, complicates how

the appropriate risk estimands should be defined. Proceeding as if a fair
algorithm can correct fundamental and widespread racial disparities fur-
ther confuses matters. Necessarily, counterfactuals in some form are being
introduced because Black offenders cannot be White offenders, and a fair
risk algorithm does not make fair all criminal justice decisions and actions
that follow. We address these issues in the context of estimates produced
by a classifier and using confusion tables and conformal prediction sets. In
so doing, we introduce counterfactual estimands to help clarify distinctions
between fair risk assessment procedures and fairness in the criminal justice
system more generally. The two are often conflated. A risk procedure ends
with the output of a risk tool. Everything that follows, including decisions
as well as actions, are features of the criminal justice system beyond the risk
algorithm.

In Section 2, we discuss definitions of fairness in the statistics and com-
puter science literature commonly associated with criminal justice risk as-
sessment and introduce two key concepts: internal fairness and external
fairness. Section 3 summarizes the methods we use to improve fairness in
criminal justice risk assessments: how a classifier should be trained, how
to make comparable joint distributions of the data from different protected
groups, and how to gauge fairness using conformal prediction sets. These
methods are discussed more formally in Appendices A through D. Section
4 describes the data to be analyzed, and Section 5 discusses the results. In
section 6, we return in depth to the empirical results shown as conformal
prediction sets. Conclusions are offered in Section 7.

2 Defining Fairness for Protected Groups

Under the U.S. Civil Rights Act of 1964, a “protected group” is a class of
people that has explicit protection against discrimination consistent with the
5th and 14th Amendments to the United States Constitution. Racial groups
are perhaps the most well-known example. There are no such authoritative
statements for algorithmic discrimination in part because jurisprudence is
still trying to catch up (Huq, 2019). There is not even a common language
to address the issues.

For criminal justice risk assessments, the analogue to discrimination is
an absence of “fairness,” whether intentional or unintentional. Fairness can
take a variety of well-defined forms, but naming conventions vary widely.
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The definitions to follow arise directly from confusion tables and are easily
translated into many common fairness typologies employed in risk assess-
ment (Kleinberg et al., 2017; Kroll et al., 2017; Berk et al., 2018, Baer et
al., 2020; Mitchell et al., 2021). Other definitions briefly are considered in
due time. Anticipating our later data analyses, we use White criminal jus-
tice offenders and Black criminal justice offenders at their arraignments as
illustrations of the groups for which fairness is sought. Fairness centers on
their algorithmic forecasts of risk. Is the algorithmic output fair?

• Prediction parity – The predictive distributions across protected groups
are the same. Predictive parity can be estimated with test data by, for
example, the proportions of Black offenders or White offenders fore-
casted to be arrested after an arraignment release. Prediction parity
is sometimes called demographic parity.

Prediction parity is judged by the risk tool output, not the decisions
that follow or any subsequent actions or occurrences. An important
implication is that the actual outcome class to be forecasted (e.g., an
arrest) has no role in the definition of prediction parity. As a result,
prediction parity has been criticized as unsatisfactory and even irrel-
evant (Hardt et al., 2016). Yet, an absence of prediction parity may
be linked to “mass incarceration,” which in practice cannot easily be
disregarded. Moreover, requiring the inclusion of the actual outcome
class in fairness definitions leads to challenges we address shortly.

• Classification parity – The false positive rates and false negative rates
are the same for across protected groups. A false positive denotes that
a risk algorithm incorrectly classified a case with a negative class label
as a case with a positive class label. A false negative denotes that a
risk algorithm incorrectly classified a case with a positive class label
as a case with a negative class label.1 The false positive rate and a
false negative rate are the respective probabilities that the algorithm
classifies outcomes erroneously. When there are more than two out-
come classes, classification parity follows from the same reasoning, but
there are no common naming conventions.

Ideally, false positive and false negative rates are estimated with test
data. Classification error for a particular outcome class, such as an

1Which outcome class is a positive and which is a negative is determined by the subject
matter or policy being addressed. In the analysis to follow, an arrest for a violent crime
is a negative, and the absence of such an arrest is a positive.
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arrest, is the proportion of subjects erroneously classified as not ar-
rested among all who actually were arrested. If an arrest is the positive
class, for example, one has an estimate of the false negative rate. More
formally,

Classification Error (for an arrest)

:=

∑
i∈test 1{Ŷi 6= Yi, Yi = arrest}∑

i∈test 1{Yi = arrest}
.

(1)

Yi is the true outcome for subject i in test data, and Ŷi is the forecasted,
test data outcome from the trained classifier (i.e., usually the outcome
with the highest estimated probability). The classification error in (1)
is an estimator of P(Ŷ 6= Y |Y = arrest). Note that one conditions on
the true outcome class.

Classification error, whether through false positives or false negatives,
has played a central role in fairness discussions by statisticians and
computer scientists (Baer et al., 2020). However, it is often irrelevant
to stakeholders, who in practice care far more about forecasting ac-
curacy. In real forecasting settings, the actual outcome is unknown,
and any subsequent decisions can be primarily informed the forecasted
outcome. Further, emphasizing classification may favor interpretations
akin to the prosecutor’s fallacy (Thompson and Schumann, 1987); clas-
sification accuracy is used inappropriately to evaluate forecasting ac-
curacy.

• Forecasting accuracy parity – Each outcome class is forecasted with
equal accuracy for each protected group. A forecast is incorrect if
the forecasted outcome does not correspond to the actual outcome.
In contrast to classification parity, one conditions on the forecasted
outcome not the actual outcome.

Here too, estimation should be undertaken with test data. The fore-
casting error for a particular outcome, such as an arrest, is the pro-
portion of subjects erroneously forecasted to not be arrested among
all subjects for whom an arrest was the forecast. Formally,

Forecasting Error (for an arrest)

:=

∑
i∈test 1{Ŷi 6= Yi, Ŷi = arrest}∑

i∈test 1{Ŷi = arrest}
.

(2)
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The notation Yi and Ŷi is the same as for classification parity. Im-
plemented with test data, forecasting error (2) is an estimator of
P(Ŷ 6= Y |Ŷ = arrest).

In some formulations, achieving forecasting accuracy parity requires
that the forecasts are calibrated. For example, suppose a risk tool
projects for certain offenders a probability of .68 for an arrest. For
calibration, the actual arrest probability for all such offenders must
also .68. (Baer at al., 2020). The same reasoning applies over the full
set of predicted arrest probabilities. By itself, this criterion is silent
on fairness, but it restricts discussion of forecasting accuracy parity to
applications in which risk tools is by this yardstick performing well.

• Cost Ratio parity – The relative costs of false negatives to false pos-
itive (or the reciprocal), as defined above, are the same for each pro-
tected group. The cost ratio determines the way in which a risk as-
sessment classifier trades false positives against false negatives. Com-
monly, some risk assessment errors are more costly than others, but
the relative costs of those errors should be same for every protected
group. The same reasoning applies when there are more than two
outcome classes.2

2.1 Some Complications in Practice

Operationalizing these fairness definitions is challenging. Practice usually
demands that when each kind of parity is evaluated, some form of direct
and legitimate comparability is enforced. Whether individuals or groups are
the observational units, they must be “similarly situated.”

For much of the current fairness literature, whether observational units
are similarly situated is primarily a technical problem that boils down to
methods that adjust for confounders, sometimes in a causal model. Typically

2These costs are rarely monetized. How would one measure in dollars the “pain and
suffering” a homicide victim’s family or the psychological trauma of neighborhood children
who witness a homicide? What matters for the risk algorithm is relative costs. For
example, failing to accurately identify a prison inmate who after release commits a murder
will be seen by many stakeholders as far more costly than failing to accurately identify a
prison inmate who after release becomes a model citizen. The cost ratio might 5/1. In
practice, the desired relative costs are a policy choice made by stakeholders that, in turn,
is built into the risk algorithm. If no such policy choice is made, the algorithm necessarily
makes one that can be very different from stakeholder preferences and even common sense.
Cost ratios can affect forecasted risk, often dramatically.
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overlooked is that candidate confounders possess normative as well as causal
content, and both affect how confounders are selected. On the closely related
notion of culpability, Horder observes (1993: 215) “... our criminal law shows
itself to be the product of the shared history of cultural-moral evolution,
assumptions, and conflicts that is the mark of a community of principle.”
As a result, controversies over fairness often begin with stark normative
disagreements about what it means to be similarly situated. For example,
should an offender’s juvenile record matter in determining whether cases
are similarly situated? The answer depends in part on how in jurisprudence
psychosocial maturity is related to culpability (Loeffler and Chalfin, 2017).

Normative considerations also can create unresolved incongruities. Of-
ficial sentencing guidelines, for example, often prescribe that defendants
convicted of the same crimes and with the same criminal records, should
receive the same sentences. Under these specific guidelines, such defendants
are similarly situated (Ostrom et al., 2003: chapter 1). “Extralegal” factors
such as gender, race, and income are not properly included in that determi-
nation. But if “criminal records” are significantly a product of gender, race,
and income, should they not be extralegal as well? The extensive literature
on fairness cited earlier makes clear that there is no satisfactory answer in
sight. In the pages ahead, we offer a pragmatic way forward.

There no empirical standard for how small disparities in parity must
be for the parity to be acceptable, although most stakeholders agrees that
small disparities may suffice.3 Interpretations of “small” will be contentious
because harm depends on facts and judgements that are easily disputed.
Moreover, there usually is no clear threshold at which some amount harm
becomes too much harm. Similar issues arise across the wide variety litiga-
tion domains (Gastwirth, 2000). The fairness literature has been silent on
the matter, and we do not address it here. It is peripheral to our discus-
sion of fairness, but for fair algorithms to be used effectively in practice, a
binding resolution is required.

In contrast, there is a rich and persuasive literature on provable trade-
offs between certain forms of parity and between parity, accuracy and trans-
parency (Kleinberg et al., 2017; Barocas et al., 2018; Coglianese and Lehr,
2019; Kearns and Roth, 2020; Diana et al., 2021; Mishler and Kennedy,
2021). These tradeoffs are of more than mathematical interest because they
affect virtually all proposals to make algorithms more fair. Compromises
are various kinds are in practice inevitable. There does not seem to be at

3A tactic that has been used to preclude algorithmic risk assessment altogether is to
insist on exact parity.
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this point any technical resolution allowing stakeholders to have it all.

2.2 Counterfactuals: Internal and External Fairness

Despite the challenges, one has estimators for the four kind of parity that can
be employed with the usual test data. Organizing the test data separately
into a confusion table for each protected group, one easily can consider the
degree to which each kind of parity is achieved. When each kind of parity
is examined using a combination of test data and algorithmic output, one is
assessing what we call internal fairness.

Prediction parity is a very important special case. Because outcome
labels are unnecessary for its definition, one legitimately can examine this
form of algorithmic fairness from test data and algorithmic output alone. If
the distribution of outcome forecasts is not sufficiently same across protected
groups, one properly may claim that prediction parity has been violated.4

Such claims may really matter. Recall that an absence of prediction
parity can be a driving force for mass incarceration. Mass incarceration
usually refers to the over-representation of Blacks in the jails and prisons
in the United States and is seen by some as modern extension of slavery
(Waquant, 2002). It has been a “hot button” issue for over a decade (Lynch,
2011), perhaps second only to police shootings in visibility and rancor.

For classification parity, forecasting accuracy parity, and cost ratio par-
ity, one must have the labels for the actual outcomes because those labels
are built into their fairness definitions. Typically, each observation in the
training and test data has such a label. Yet, we have defined internal fair-
ness such that it depends on test data outcome labels that represent a status
quo, which can include racial disparities carried forward as an algorithm is
trained and fairness is assessed. For our approach to fairness that treats
Black offenders as if they are White, such labels may be especially mislead-
ing. We prove in Appendix D that, except for prediction parity, isolating
the fairness of a risk algorithm requires untestable causal assumptions that
cannot be enforced in practice. These include rank preservation and strong
unconfoundedness in how the criminal justice system might treat a person

4There are many simple ways to achieve prediction parity. For example, at arraignment
the magistrate might flip a fair coin. Heads means the offender is released. Tails means
that the offender is detained. All offenders regardless of race or gender are released
with a probability of .50. But the magistrate properly would be accused of procedural
capriciousness (Holewinski, 2002). An approach that detained everyone would also achieve
prediction parity but probably would fail by the criterion of arbitrariness. In real settings,
methods that create prediction parity must also pass jurisprudential muster.
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if he or she were of a certain race.5

In short, no matter the number of observations or how the data are
collected, test data outcome labels for Black offenders, such as an arrest,
cannot be assumed to accurately capture the counterfactual of policing in
which Blacks are treated the same as Whites. Yet, accurate information
about counterfactuals is a prerequisite for what we call external fairness.
External fairness is a function for protected groups of the risk algorithm
and unobserved fair counterfactual.

There are other fairness definitions advocated by some for which the con-
cerns are the same. “Separation” requires that the forecasted outcome be
independent of protected group membership, given the true outcome (Hardt
et al., 2016). “Sufficiency” requires that the true outcome be independent of
the protected group membership, given the forecasted outcome (Baer et al.,
2020). “Predictive parity” (not prediction parity) requires that the proba-
bility of the true outcome conditional on the forecasted outcome be the same
when one also conditions on protected group membership (Chouldechova,
2017). As before, the fundamental challenge is that the counterfactual out-
come for Black offenders is not available in the test data.

Consider, for example, counterfactual classification parity as a form of
external fairness:

Counterfactual Classification Error (for no arrest)

:=

∑
i∈test 1{Ŷi 6= Yi, Y

∗
i = no arrest}∑

i∈test 1{Y ∗i = no arrest}
.

(3)

where, Y ∗i in our formulation denotes the underlying counterfactual out-
come for a Black offender treated upon release as a similarly situated White
offender, and Ŷi is the forecast from the trained algorithm. The need for
similarly situated comparisons is built into the application of each form of
counterfactual fairness.

Counterfactual outcomes underscore that all criminal justice risk algo-
rithms necessarily have a circumscribed reach. They are a computational
procedures that transform the input with which it is provided into informa-
tion intended to help inform decisions. One can legitimately ask, therefore,
if the algorithmic output by itself is fair; is the algorithm “intrinsically”
fair? A criminal justice risk algorithm is not responsible for the deployment
of police assets, the tactics that police employ, an easy access to firearms,

5In passing, related issues arise when DAGs and causal reasoning are used to isolate
the impact of race on any criminal justice outcome (Baer et al., 2020).
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gang rivalries, and myriad other factors that can affect the likelihood of a
post-release arrest. Outcome labels in test data incorporate these factors
over which a risk algorithm has no control. These factors can produce mis-
leading assessments for classification parity, forecasting accuracy parity and
cost ratio parity. One can have an algorithm that itself is fair despite what
an analysis using test data shows. Put more strongly, stakeholders are being
unrealistic to demand a fair risk algorithm fix widespread inequities in the
criminal justice system and the social world more generally.

It follows that proper evaluations of classification parity, forecasting
accuracy, and cost ratio parity may be at this point largely aspirational.
Within our approach to fairness and later empirical application, there is
no apparent path to sound estimates of the counterfactual world in which
race has no role in arrests after an arraignment release such that Black of-
fenders are treated the same as similarly situated, White offenders. One
might choose instead to assume that race is unrelated to the many causes
of an arrest, but that would be contrary to the overwhelming weight of
evidence (Robert Wood Johnson Foundation, 2017; Rucker and Richeson,
2021; Muller, 2021).6

Other forms of counterfactual reasoning have been proposed for con-
sideration of fairness. For example, Misher and Kennedy (2021; section
2.2) note the potential importance of a race counterfactual somewhat like
ours. (i.e., What would happen if an individual’s race were different?) Nabi
and colleagues (2019) offer a DAG formulation for fair policies steeped in
counterfactuals but requiring assumptions that would be difficult to defend
in criminal justice settings. Kusner and colleagues (2018) provide a DAG
framework for examining racial counterfactuals, but it too requires rather
daunting assumptions. Imai and Jiang (2021) use counterfactual reasoning
to define the concept of “principal fairness,” which if achieved, subsumes
many of the most common kinds of fairness, but requires conditioning on all
relevant confounders. The formulation proposed by De Lara and colleagues
(2021), using counterfactual thinking, optimal transport and related tools,
is strongly connected to some aspects of our formulation, but makes no

6Why race is so strongly implicated does not require racial animus by police and other
criminal justice agents. To take a tragic example, the numbers of homicides and shootings
recently have increased substantially in many American cities. The vast majority of vic-
tims are Black. The vast majority of perpetrators are Black. These facts are not a product
of racist “overpolicing,” racially targeted “stop-and-frisk” or racially slanted data. Insofar
as the causes are understood, they go to easy access to firearms and long-term structural
issues ubiquitous in disadvantaged neighborhoods, perhaps exacerbated by the COVID
pandemic (Sorenson et al., 2021).
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distinction between disparities and unfairness such that, for example, there
can be no “bona fide occupational qualifications” under Title VII of the U.S.
Civil Rights Act of 1964, Section 625.7

These interesting papers (see also Mitchell et al., 2020) apply a rich
variety of counterfactual ideas to fairness. However, they do not consider
many of the foundational fairness concerns raised earlier, such as the need for
a fairness baseline or the meaning of “similarly situated.” As a result, they
are currently are some distance from applications in real settings where risk
algorithms can directly affect people’s lives. They also differ substantially
in method and focus from our approach, to which we turn now.

3 Achieving A Fair Criminal Justice Risk Assess-
ment Procedure

When a criminal justice risk algorithm is trained, the data consist of two
parts. There are predictors, and there are outcome class labels. The former
are used to fit the latter. Both can be responsible when racial disparities
are carried forward when a risk algorithm is trained.

Even when race is not included among the predictors, it is widely under-
stood that all predictors can have racial content (Berk, 2009). For example,
the number of prior arrests may be on the average larger for Blacks offenders
than for White offenders. Black offenders may also tend to be younger and
have been first arrested at an earlier age. Customary outcome classes used
in training algorithmic risk assessments represent adverse contacts with the
criminal justice system, such as arrests or convictions. Associations with
race are typical here as well.

There are lively, ongoing discussions about why such racial associations
exist (Alpert et al., 2007; Harcourt, 2007; Gelman et al., 2012; Grogger and
Ridgeway, 2012; Starr, 2014; Tonrey, 2014; Stewart et al., 2020). Some ex-
planations rest on charges of racial animus in the criminal justice system,
some focus on criminal justice practices properly motivated but with unto-
ward effects, and some take a step back to large inequalities in society that
propagate crime.

7For some occupations, a person’s sex, religion, or national origin may be necessary to
successfully undertake a job that is a normal activity in a business or enterprise. There
can also be legitimate performance requirements as long as all job applicants have an
opportunity demonstrate whether they can fulfill those performance requirements. The
issues can be subtle. For example, a performance test may not represent sufficiently the
actual job requirements.
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It is likely that some mix from each perspective is relevant, but there is no
credible integration yet available. Therefore, we take no position in this pa-
per on explanations for the role of race, although a range of associations are
empirically demonstrable. Rather, we more simply build on professed dif-
ferences in privilege consistent with extensive research (Rothenberg, 2008;
Rocque, 2011; Van Cleve and Mayes, 2015; Leonard, 2017; Wallis, 2017;
Bhopal, 2018; Edwards et al., 2019; Jackson, 2019; GBD 2019 Police Vi-
olence Subnational Collaborators, 2021). From a pragmatic point of view,
we are responding as well to common suppositions and frequent stakeholder
claims.

We proceed in three steps: (1) training the risk algorithm in a novel
manner, (2) transporting the predictor distribution from the less privileged
group to the more privileged group, and (3) constructing conformal predic-
tion sets to serve as risk forecasts. Each step is briefly summarized next.

3.1 Training The Classifier

We train the risk algorithm only on White offenders; both the predictors
and the outcome are taken solely from Whites. No racial distinctions be-
tween Black and White offenders can be “baked into” the risk algorithm
because the algorithm has information exclusively on White offenders; race
is a constant. The algorithm is necessarily blind to any racial differences.

Subsequently, when risk forecasts are sought from unlabeled data for a
particular White offender, one can proceed as usual by obtaining predictions
from the trained classifier. However, risk forecasts for unlabeled Black of-
fenders obtained using the White-trained algorithm still can produce racial
disparities because Black offenders can have more problematic predictor dis-
tributions, whatever their cause. Black offenders on the average will then
be treated by the algorithm as particularly risky White offenders leading to
less favorable forecasted outcomes.

3.2 Transporting Observations Across Protected Groups

A second adjustment is required that makes comparable the joint distri-
butions of predictors for Black offenders and White offenders. We use a
form of optimal transport (Hütter and Rigollet, 2020; Manole et al., 2021;
Pooladain and Niles-Weed, 2021) to make the joint predictor distribution for
Black offenders like the joint predictor distribution for White offenders. To
take a toy example, an arrested Black offender 18 years of age, with 3 prior
robbery arrests and a first arrest at age 14, might be given predictor values
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from an arrested White offender who was 20 years age with 1 prior robbery
arrest, and a first arrest at age 16. In effect, we are obtaining exact or
near quantile matches, which operationalize “similarly situated.” Empirical
evidence is provided later.

Our estimation procedure builds on work by Hütter and Rigollet (2020:
section 6.1), based on the Kantorovich “relaxation” (Peyré and Cuturi, 2019:
section 2.3), that affords a linear programming fitting algorithm (Peyré and
Cuturi, 2019: chapter 3). The transported joint predictor distribution is
then smoothed with a form of nonparametric regression so that it can be
used to transport predictors from new, unlabled cases for which forecasts
are needed. Details and pseudocode are provided in Appendix B. Further
discussion can also be found in the application.

3.3 Forecasting for Individual Cases

The practical task for a criminal justice risk assessment is to forecast one
or more behavioral phenomena. By training a classifier only on White of-
fender data and evaluating fairness separately using White test data and
transported Black test data, one can compare the aggregate performance of
a risk assessment tool across protected groups using conventional confusion
tables. There also can be forecasts for individuals that minimize Bayes risk.

Arguably, a more defensible approach rests on conformal prediction sets
(Vovl et al., 2005; 2009; Shafter and Vovk, 2008; Romano et al., 2019;
Kuchibhotla and Berk, 2021). The output for a categorical response vari-
able is a prediction set with an associated probability that the set includes
the true future outcome class(es). The prediction set has valid statistical
properties even in finite samples. Appendix C provides a more complete
treatment and pseudocode for the form of conformal inference we employ.
There is further discussion in the application.

3.4 Diagrammatic Summaries of Our Risk Algorithm

Procedural details are provided in two diagrams with brief explanations for
our entire risk algorithm from the training of a classifier, to the use of optimal
transport, to the output of a conformal prediction set. Figure 1 addresses
how the fair algorithm was constructed. Figure 2 addresses fair forecasting.
Both figures are further unpacked in the appendices. In addition, the data
analysis to come provides a grounded methodological discussion.

In theory, we achieve our overall goal of constructing a fair algorithmic
risk tool. But in practice, there are two challenges. First, our procedures
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Figure 1: Flowchart for the training part of our “fair” risk algorithm. The
function f̂white(·) denotes the output vector of probabilities for each outcome
obtained from a classifier fit on the white training data. The map T̂ (·)
denotes the estimate of the optimal transport map; see Appendix B (and
Algorithm 2) for details. The set Ĉwhite

α (·) is the conformal prediction set
obtained using f̂white(·) and the white calibration data; see Appendix C
(and Algorithm 3) for details.
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Figure 2: Flowchart for producing fair conformal prediction sets. The func-
tion f̂white(·) denotes the output vector of probabilities for each outcome
obtained from a classifier fit on the first split white training data. The map
T̂ (·) denotes the estimate of the optimal transport map obtained from the
first split training data for whites and blacks; see Appendix B for details.
The set Ĉwhite

α (·) is the conformal prediction set obtained using f̂white(·)
and second split white training data.

must be implemented on real data. We turn to that task next. Second, as
a formal matter, external fairness parities from test data will not provide
valid fairness assessments without very strong assumptions. Recall that the
required counterfactual outcome is unobservable in existing criminal justice
datasets. The implications for policy are addressed after the application is
presented.

4 The Data

We analyze a random sample of 300,000 offenders at their arraignment from
a particular urban jurisdiction in the United States.8 Because of the ran-
dom sampling, the data can be treated as IID and, therefore, exchangeable.
Even without random sampling, one might well be able to make an IID
case because the vast majority of offenders at their arraignment are realized
independently of one another.

Among those being considered for release at their arraignment, one out-
come class (coded “1”) to be forecasted is whether the offender will be

8At an arraignment, which is supposed to be held within 48 hours of an arrest, the
charges are read officially to the arrested offender. The presiding magistrate then decides
whether the offender can be released, sometimes with a bail bond, subject to a later return
to court, or detained until that later court date.
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arrested after release for a crime of violence. Such crimes are of special con-
cern.9 An absence of such an arrest (coded “0”) is the alternative outcome
class to be forecasted.

The follow-up time was 21 months after release. For reasons related to
the ways in which competing risks were defined, 21 months was chosen as
the midpoint between 18 months and 24 months. For the analysis to follow,
the details are unimportant.

Candidate predictors were the usual variables routinely available in large
jurisdictions. Many were extracted from adult rap sheets and analogous ju-
venile records. Biographical variables included race, age, gender, residential
zip code, employment information, and marital status. There were overall
70 potential predictors.

In response to potential stakeholder concerns about “bias,” we excluded
race, zip code, marital status, employment history, juvenile record, and ar-
rests for misdemeanors and other minor offenses. Race was excluded for
obvious reasons. Zip code was excluded because, given residential patterns,
it could be a close proxy for race. Employment history and marital status
were eliminated because there were objections to using “life style” measures.
Juvenile records was discarded because poor judgement and impulsiveness,
often characteristics of young adults, are not necessarily indicators of long
term criminal activity. Minor crimes and misdemeanors were dropped be-
cause many stakeholders believed that arrests for such crimes could be sub-
stantially influenced by police discretion, perhaps motivated by racial ani-
mus.

The truth underlying such concerns is not definitively known, but inso-
far as the discarded predictors were associated with any included predictors,
potential biases remain (Berk, 2009). These decisions underscore our earlier
point that there are legitimate disagreements over what features of individ-
uals or groups should determine the when a similarly situated comparison
has been properly undertaken. They also highlight the tradeoffs to be made
when a suspect predictor also is an effective predictor.

In the end, the majority of the predictors were the number of prior
arrests for a variety of serious crimes, and the number of counts for various
charges at the arraignment. Other included predictors were whether an
individual was currently on probation or parole, age, gender, the age of a
first charge as an adult, and whether there were earlier arrests in the same

9It might seem that using a conviction rather than an arrest would convey more about
the actual crime, but the vast majority of criminal trials are resolved by a guilty plea
after a negotiated agreement between the defense and prosecuting attorneys. Strategic
maneuvering can dominate the process. Racial factors can enter as well.
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year as the current (arraignment) arrest. For the analyses to follow, there
were 21 predictors.10

The 300,000 cases were randomly split into training data for White of-
fenders, training data for Black offenders, test data for White offenders, and
test data for Black offenders. Half the dataset was used as training data
(n = 150, 000) and half the dataset was used as test data (n = 150, 000).
Sizes of the racial splits of the training and test data were simply determined
by the numbers of Black offenders and White offenders available in the data.
Each racial split had at least 40,000 observations. Asymptotic performance
is probably of little concern.

5 Fairness Results

We began by training a stochastic gradient boosting algorithm (Friedman,
2001) on White offenders only using the procedure gbm from the library
gbm in the scripting language R. For illustrative purposes and consistent
with many stakeholder priorities, the target cost ratio was set at 8 to 1
(Berk, 2018). Failing to correctly classify an offender who after release is
arrested for a crime of violence was taken to be 8 times worse than failing
to correctly classify an offender who after release is not arrested for such a
crime. We were able to approximate the target cost ratio reasonably well in
empirical confusion tables by weighting more heavily training cases in which
there was an arrest for a crime of violence. This, in effect, changes of the
prior distribution of the outcome variable.

All tuning defaults worked satisfactorily except that we chose to con-
struct somewhat more complex fitted values than the defaults allowed.11

The results were essentially the same when the defaults were changed by
modest amounts. The number of iterations (i.e. regression trees) was deter-
mined empirically when, for a binomial loss, the reductions in the test data
effectively ceased.12

10The two age-related variables and whether there were other arrests within the past year
are “dynamic variables” because they can change over time. For other criminal justice
decisions, such as whether to grant parole, there can be many more dynamic variables
(e.g., work history in prison). At an arraignment, one is limited largely to what could be
extracted from existing rap sheets and current charges.

11We used greater interaction depth to better approximate interpolating classifiers
(Wyner et al., 2015). Even after weighting, we were trying to fit relatively rare out-
comes. We needed an ensemble of regression trees each with many recursive partitions of
the data.

12Because of the random sampling used by the gbm algorithm, the number of iterations
in principle can vary a bit with each fit of the data. Also, the number of trees can
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5.1 Algorithmic Performance Results for White Offenders

Algorithmic risk assessments can be especially challenging when the marginal
distribution of the outcome is highly unbalanced. For binary outcomes,
this means that if criminal justice decision-makers always forecast the most
common outcome class, they will be correct the vast majority of the time.
It is difficult for an algorithm to forecast more accurately. Because post-
arraignment arrests for a crime of violence are well-known to be relatively
rare, we were faced with the same challenge that, nevertheless, provided an
instructive test bed for examining fairness.

To set the stage, Table 1 is the confusion table for White offenders using
the risk algorithm trained on Whites and test data for Whites.13 Perhaps
the main message is that if arraignment releases were precluded solely by
the risk algorithm when arrests for a violent crime were forecasted, more
violent crime might be prevented.

Here’s the reasoning. From the outcome marginal distribution of an ar-
rest for a crime of violence, minimizing Bayes loss always counsels forecasting
no such arrest after an arraignment release. That forecast would be wrong
for 7.5% of the White offenders. From the left column in Table 1, when the
algorithm forecasts no arrest for a violent crime after an arraignment, the
forecast is wrong for 5% of the White offenders. If from the marginal distri-
bution one always forecasted an arrest for a crime of violence, the forecast
would be wrong for 92.5% of the White offenders. From right column in
Table 1, the algorithm is mistaken for 85% of the white offenders. These
are modest improvements in percentage units, but given the large number
of White offenders, over 2000 of violent crimes might be averted if the risk
algorithm determined the arraignment release decision.

Table 1: Test Data Confusion Table for White Offenders Using the White-
Trained Algorithm (28% Predicted to Fail, 7.5% Actually Fail)

Actual Outcome No Violence Predicted Violence Predicted Classification Error
No Violence 31630 (true positives) 11246 (false positives) .26

Violence 1527 (false negatives) 1975 (true negatives) .47
Forecasting Error .05 .85

arbitrarily vary by about 25% with very little impact.
13The empirical cost ratio in Table 1 is 11246/1527, which is 7.4 to 1. It is very difficult

in practice to the arrive exactly at the target cost ratio, but cost ratios within about 20%
of the target usually lead similar confusion tables.
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At the same time, forecasting accuracy is shaped substantially by the cost
ratio. Because the target cost ratio treats false negatives as 8 times more
costly than false positives, predictions of violence in Table 1 are dominated
by false positives. This follows directly and necessarily from the imposed
tradeoffs. Releasing violent offenders is seen to be so costly that even a hint
of future violence is taken seriously. But then, many mistakes are made
when an arrest for a crime of violence is forecasted. In trade, when the
algorithm forecasts no arrest for a violent crime, it is rarely wrong; there
are relatively few false negatives. This too follows from the target cost ratio.
If even a hint of violence is taken seriously, those for whom there is no such
hint are likely to be very low risk releases. In short, with different target
cost ratios, the balance of false positives to false negatives would change,
perhaps dramatically, which means that forecast accuracy would change as
well.14

The aversion to false negatives results in a projection that 28% of the
White offenders will fail through a post-release arrest for a violent crime. In
the test data, only 7.5% actually fail in this manner. The policy-determined
tradeoff between false positives and false negatives produces what some call
“overprediction.” With different tradeoff choices, overprediction could be
made better or worse. In either case, there would likely be important con-
cerns to reconsider.

Overprediction concerns become even more prominent if test data for
Black offenders are used to forecast post-arraignment crime. When the
Black test data are employed with the algorithm trained on Whites, 41%
of the Black offenders are forecasted to be arrested for a crime of violence,
whereas 11% actually are. The base rate is a bit higher for Black offenders
(i.e., 11% compared to 7.5%), but the fraction projected to arrested for a
violent crime increases substantially (i.e., from 28% to 41%). As emphasized
earlier, the latter disparity cannot be a product of racial differences in the
algorithmic machinery. It is trained only on Whites. The likely culprit is
racial disparities in the test data provided to the classifier. In any case, there
is clear evidence from the test data that predictive parity is not achieved
solely by training the risk algorithm on White offenders.

14Note that an algorithm is not a model. “An algorithm is nothing more than a very
precisely specified series of instructions for performing some concrete task”(Kearns and
Roth, 2020: page 4). It is not meant to explain some phenomenon, depict causal effects, or
characterize how the data were generated. Consequently, the forecasted classes have noth-
ing to say about why either outcome class is realized. Some arrests might be “rightous,”
some might be a direct or indirect product of race, and many can be a mix of the two,
but the precise mechanisms are not manifest.
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Table 1 also provides conventional test data performance statistics for
the false positive rate, the false negative rate, forecasting accuracy for an
arrest for a crime of violence, forecasting accuracy for no arrest, and the
empirical cost ratio. For example, the false positive rate is .26 and when
no arrest is forecasted, it is wrong 5% of the time. Comparisons could be
made to the full confusion table for Black offenders, but the limitations of
internal fairness would intrude. We postpone a discussion until more results
are reported.

Overall, performance is roughly comparable to other criminal justice
risk assessments and probably worth close scrutiny by stakeholders (Berk,
2018). No doubt some changes in the risk classifier would be requested, and
the results would be reviewed for potential alternatives to implement. Our
intent, however, is not to claim that the results in Table 1 are definitive.
Rather, they provide a realistic context for an empirical consideration of
fairness.

5.2 Optimal Transport Performance

We applied optimal transport, briefly described earlier, using the procedure
transport in R.15 No tuning in a conventional sense was needed. However
the γ coupling matrix was n × n which meant that memory considerations
came to the fore. We tried 1000, 2000, 3000, 4000 and 5000 observations
in ascending order. At 5000 observations, computer memory was exceeded.
We proceeded, therefore using 4000 randomly selected test data observations
for Black offenders.16

A key diagnostic for optimal transport in practice is how well the trans-
ported joint probability distribution compares to the destination joint prob-
ability distribution. Summary fit statistics are too coarse. They can mask
more than they reveal. A better option is compare the correlation matrices
from the two distributions. For these results, there were no glaring incon-
sistencies, but it was difficult to translate differences in the correlations into
implications for fairness.

Perhaps the most instructive diagnostic simply is to compare the marginal
distributions for each predictor. Using histograms, we undertook such com-
parisons for each of the 21 predictors. The following figures show the results

15There are several computational options for estimating the coupling matrix. We used
the default “revsimplex” (Luenberger and Ye 2008, Section 6.4) that worked very well.

16We were surprised by how well transport performed with just 4000 observations. At
first, we were skeptical, and we tried several toy examples and datasets previously used
by others. We found no reasons to discount our results.

21



for the predictors that dominated the fit when the risk algorithm was trained
on the data for White offenders; these are the predictors that mattered most.
There were similar optimal transport results for the other, less important,
predictors.
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Figure 3: Histograms for an Offender’s Age and Transported Age (Black
offenders in orange, White offenders in blue, overlap in purple, N= 4000)

It is well-known that younger individuals have a greater affinity for vi-
olent crime than older individuals. Figure 3, constructed from the 4000
randomly selected observations provided to the procedure transport, shows
the results for the age of the offender. The top histogram compares the
test data distribution for Whites in blue to the test data distribution for
Blacks in orange. The purple rectangles show where the two distributions
overlap. Clearly, Black offenders at arraignment are on the average some-
what younger, especially for the youngest ages that place an offender at
the greatest risk. The bottom histogram is constructed in the same man-
ner but now, the White age distribution from test data is compared to the
transported Black distribution. There are no apparent differences between
the two. Clearly, Black offenders are no longer overrepresented among the
youngest ages.

One must be clear that Figure 3 shows how the age distribution for the
White test data and the Black transported test data are made virtually
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indistinguishable. This does not imply exact one to one matching of Black
offenders to White offenders in units of years. The matching going on as
part of the linear programming algorithm is by quantiles and can one to
many. More details are provided in Appendix C.

The performance of optimal transport in the bottom histogram may
seem too good to be true. However, despite some distributional differences
in the top histogram that may matter for risk, the overall shape of the two
distributions is very similar. Both peak at low values and gradually decline
in an almost linear fashion toward a long right tail. One should expect
optimal transport to perform well under such circumstances.

Perhaps more surprising is that the two distributions are so similar to
begin with. But arrests are a winnowing process affecting all protected
groups in similar ways. The pool of individuals who are arrested is more
alike than the overall populations from which they come. Regardless of
race, the pool disproportionately tends to be young, male, unemployed,
and unmarried, with appreciable previous police contact. It is commonly
said that less than 10% of the overall population are responsible for more
than 50% of the crime (e.g., Nath, 2006) This disparity is reflected in the
backgrounds of individuals who are arrested, coming more likely from that
10%.

Figure 4, constructed from the same 4000 observations, shows the results
for an offender’s number of prior arrests for crimes of violence, which is also
known to be associated with post-arraignment violent crime. It is apparent
in the top histogram that Black offenders have many more priors up to
about 40, at which point there are too few cases to draw any conclusions.
After the application of optimal transport, the bottom histogram shows no
apparent differences. As before, the two distributions were not dramatically
different before optimal transport was applied.

Figure 5, using the same 4000 observations, shows the results for the
earliest age at which an offender was charged as an adult. Offenders who
start their criminal activities at a younger age are more crime-prone subse-
quently. From the top histogram, Black offenders are more common than
White offenders at the younger ages. That disparity disappears in the bot-
tom histogram after optimal transport is applied, no doubt aided by the
similar shapes of the two distributions. Optimal transport seems to perform
as hoped to remove racial disparities in the two joint predictor distributions.

But, the effectiveness of optimal transport in a forecasting setting re-
mains to be addressed. We converted the transported joint predictor distri-
bution constructed from the Black offender test data into conformal scores
like those used in forecasting. The classifier trained on White offenders
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Figure 4: Histograms for the Number of Prior Arrests for a Crime of Violence
and the Transported Number of Prior Arrests for a Crime of Violence (Black
offenders in orange, White offenders in blue, overlap in purple, N= 4000)
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Figure 5: Histograms for the Age of the first Adult Charge and the Trans-
ported Age of the first Adult Charge (Black offenders in orange, White
offenders in blue, overlap in purple, N = 4000)
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was tasked with producing the probabilities of an arrest for a violent crime.
These probabilities were then subtracted from “1” and from “0,” yielding
Black offender conformal scores for the two possible outcome classes. In
other words, we were proceeding for illustrative purposes as if the Black test
data were unlabeled, just as new data would be when forecasts are needed.
Conformal prediction procedures for more than two outcome classes can be
found in Kochibhotla and Berk (2021).

Overlapping Histograms for Transported Hypothetical Conformal Scores
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Figure 6: Histograms for White Conformal Scores and Transported Black
Conformal Scores (Black offenders in orange, White offenders in blue, over-
lap in purple, N = 4000)

The two conformal score distributions, one for the forecasted 1s and one
forecasted 0s, were then compared to the White offender conformal scores
computed in the same manner from the White test data (i.e., as if the data
were unlabeled). Ideally, there would be no apparent racial differences.

Figure 6 shows the results. The histogram to the left contains the con-
formal scores for cases in which the hypothetical outcome is no arrest for a
crime of violence. The histogram to the right contains the conformal scores
for cases in which the hypothetical outcome is an arrest for a crime of vio-
lence. As before, the histogram rectangles for Black offenders are in orange,
the histogram rectangles for White offenders are in blue, and the overlap
rectangles are in purple. Both histograms are entirely purple. The test
data distribution of conformal scores for White offenders and Black offend-
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ers are for all practical purposes the same.17 The claim is strengthened that
for classifiers trained on White data, conformal prediction parity might be
improved by optimal transport.

When actual forecasts are required, there is another step. For Black
offenders, one needs a procedure that converts the predictor values for each
unlabeled case into its corresponding transported values. These new cases
were not available for the earlier optimal transport exercise, and repeat-
ing optimal transport for each new unlabled case was at least impractical.
Hütter and Rigollet (2020), instead suggest fitting a multivariate nonpara-
metric smoother and using that to get good approximations of transported
conformal scores. An added benefit is that the full range of predictors for
the unlabeled data can have comparable transported values. We applied
random forests.18

One begins with a conventional n × p matrix of the original joint pre-
dictor test data distribution for Black offenders denoted by XTest

b . One also
has an n× p matrix of the transported joint predictor distribution for Black
offenders denoted by XTrans

b . Each column of XTrans
b is regressed in turn on

XTest
b . Here, that means repeating this operation 21 times. Subsequently,

the predictors for any unlabeled case could be used as input for the fit-
ted random forest to output approximations of each transported predictor.
These are then collected in a matrix denoted by X̂Trans

b . When conformal
scores for forecasting are needed, these approximations can be employed as
usual as if they were the actual transported predictor values.

There is evidence from Figure 7 that some of the overlap in Figure 6
is lost because of the random forest approximation. For both histograms,
Black offenders are somewhat overrepresented at smaller values and White
offenders are somewhat overrepresented at larger values. The performance
of optimal transport has been degraded. If a conventional prediction region
were imposed, Black offenders might be more commonly forecasted to be
arrested for a violent crime and White offenders might be more commonly
forecasted not to be arrested for a violent crime.

One might do better if our random forests application were better tuned
or if some superior fitting procedure were applied. But, the conformal scores
that matter for the contents of conformal prediction sets are only those that

17The N for Whites set a 4000 because that is the number of cases used by the op-
timal transport procedure. This also makes comparisons between histograms easier to
implement.

18For example, an age of 57 for an unlabled case may not exist in the transported data
unless a smoother is applied. Random forests solves such problems because the inequalities
responsible for recursive partitioning tree by tree leave no gaps in predictor values.
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Overlapping Histograms for Hypothetical Conformal Scores

 Hypothetical Conformal Score

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

Figure 7: Histograms for White Conformal Scores and Smoothed Black
Conformal Scores with the 0 Outcome Label on the Left and 1 Outcome
Label on the Right (Black offenders in orange, White offenders in blue,
overlap in purple, N= 4000)

fall in the near neighborhood of the prediction region’s boundaries. Some
may view this as a form of robustness. We need to consider whether in
practice the reduction is overlap matters for fairness.

6 Evaluating Fairness in the Algorithmic Deter-
minations of Risk

Recall that even after training the classifier only on White offenders, racial
disparities remained, and these disparities were caused by differences at
arraignment between the joint predictor distributions for Black offenders
and White offenders. We have shown that optimal transport can remove
such disparities. But they are perhaps re-introduced when forecasts need to
be made.

We have argued elsewhere (Kuchibhotla and Berk, 2021) that when fore-
casting is the goal, accuracy is more usefully captured by conformal predic-
tion sets than by confusion tables. One major problem with confusion tables
is that forecasts are justified by minimizing Bayes loss even if there are very
small differences between the estimated probabilities. For example, a dis-
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tinction of .90 versus .10 for an arrest compared to no arrest, produces same
forecast as a distinction of .51 versus .49. In other words, the reliability of
the forecast is ignored. Another problem is that there are no finite sample
coverage guarantees for confusion table forecasts, which can be problematic
for real decisions when the number of cases is modest.

Nevertheless, standard practice and many scholarly treatments of fair-
ness emphasize examinations of confusion tables. We take a rather different
approach using conformal prediction sets. But interested readers can see in
Appendix E that if one transports a joint distribution including the response
variable as well the predictors, the confusion table from test data for White
offenders is effectively the same as the confusion table from transported test
data for Black offenders. For many stakeholders and some scholars, this may
suffice for algorithmic fairness.

6.1 Results for Conformal Prediction Sets

We focus on predictive parity. For these data, predictive parity requires
that conformal prediction sets for Black offenders and White offenders are
substantially the same for a given coverage probability. Table 3 shows the
results for our data on offenders at arraignment. A coverage probability was
a specified somewhat arbitrarily as .95.19

Prediction White Black Black
Set Test Data Transported data Smoothed data

{∅} 0.0 0.0 0.0
{0} 0.58 0.58 0.54
{1} 0.03 0.03 0.03
{1, 0} 0.39 0.39 0.43

Table 2: Estimated Proportions for Conformal Prediction Sets from White
Test Data Predictors, Transported Black Predictors and Fitted Transported
Black Predictors all at 1− α = .95

In order to obtain a sufficient number of observations for instructive re-
sults, we treated the test data for White and Black offenders as if the labels
were unknown. For White offenders, we obtained conformal prediction sets

19The coverage probability is, in effect, a tuning parameter that can be varied by the
researcher. For example, with smaller coverage probabilities, the conformal prediction sets
tend to contain fewer elements. There are potential gains in precision in trade for losses
in certainty.
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as one ordinarily would. This is a very important feature of our proce-
dures because it guarantees that our procedures do not alter the conformal
prediction sets computed for Whites. Overall, therefore, no white offend-
ers and White offenders as a group are not made worse off by the fairness
adjustments. For them, there are none.

For Black offenders we proceeded in the same manner except using two
different predictor distributions: for the transported, joint predictor distri-
bution and for it random forests smoothed, transported approximation. For
Black offenders, there were 4000 observations. For White offenders, there
about 10 times more.

The rows in Table 3 contain results for the four possible conformal pre-
diction sets, where “1” denotes an arrest for a violent crime and “0” denotes
no such arrest. These prediction sets are shown in the first column. In the
second column are the proportions of times each prediction set materialized
for the White test data. There were no empty sets implying that there were
no outlier conformal scores. The most common prediction set was {0} fol-
lowed closely by {1, 0}. The prediction set {1} surfaced very rarely. One
might have expected these results because the outcome class of no arrest
for a crime of violence dominated the marginal distribution of the response
variable.

One important implication from the conformal prediction sets for Whites
is that a substantial number of the arrest forecasts produced by the risk
classifier and reported Table 1 might properly be seen as unreliable. When
an arrest forecasted, the boosting classifier very often was unable produce a
definitive distinction between the two possible outcome classes. Yet, unrelia-
bility forecasts are treated by confusion tables the same as reliable forecasts.

The second and third columns have identical prediction set proportions
for up to two decimal places; the prediction sets from the White offenders’
test data and from the Black offenders’ transported test data are effectively
identical. One has prediction parity in principle.

The fourth column shows that in practice there also is very close to
perfect prediction parity when the approximate transported predictors are
used for Black offenders. The proportion of prediction sets for which the
forecast is an arrest for a violent crime remains at .03 for both Blacks and
Whites. There is a slight reduction in the proportion of prediction sets that
include no arrest by itself (i.e., {0}) and a slight increase in the proportion
of prediction sets for which the classifier cannot make a clear choice (i.e.,
{1, 0}). Whether such differences matter would be for stakeholders to decide.
A lot would depend on what a court magistrate would do with the {1, 0}
prediction sets. An option that might be acceptable to all would be to
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withhold a decision until additional information was obtained that could
improve forecasted outcome differentiation.

Finally, there is no assurance that the comparability shown in Table 3
will be achieved in other settings. The number of observations matters.
So do the properties of the data. We have produced prediction parity but
have not guaranteed it for new data. It remains to be seen how widely our
results might generalize. The challenge comes not just from different mixes
of offenders, but from different ways to define “similarly situated.” Should
juvenile arrests, for example, not be used?

7 Conclusions

Discussions of fairness for criminal justice risk algorithms can be puzzling.
There is often a failure to appreciate that there are challenging tradeoffs
between different kinds of fairness and between fairness, accuracy and trans-
parency. You can’t have it all. Yet many stakeholders argue that anything
less is intolerable.

In addition, algorithmic fairness is commonly conflated with criminal
justice fairness more generally. Confusion follows. A risk algorithm should
not be blamed for criminal justice decisions and actions for which it is not
responsible, and in any case, no algorithm can expected to fix decades of
criminal justice inequities.

Another difficulty is that there is often confusion between disparate al-
gorithmic performance and unfair algorithmic performance. If one protected
group is accurately projected to be on the average a greater risk to public
safety than another protected group, one should not automatically declare
that the forecast is unfair. One must dig deeper to understand why the
disparity is there to begin with. For example, if offenders past 50 years of
age are usually forecasted to present little danger to the public, the risk
algorithm simply may be exploiting the well documented fact that criminals
typically “age out” of crime (Bekbolatkzy et al., 2019). Older offenders are
not being given a pass just because of their seniority.

There commonly is also a failure to appreciate that a proper benchmark
for risk algorithm performance is not perfection. The performance of risk
algorithms should be compared to the performance of humans undertaking
the same tasks. With all of the well-documented criticisms of the crimi-
nal justice system, the performance bar often can be quite low. A proper
test is whether an algorithm can be more accurate, more fair, and more
transparent.

30



In response to these complications, we have focused on the input and
output of algorithmic risk assessments. Although any subsequent decisions
or actions may be unfair, they are beyond a risk algorithm’s reach and are
best addressed by reforms tailored to those phenomena. Blaming a risk
algorithm is at best a distraction and can divert remediation efforts away
from fundamental change.

We have shown that prediction parity is easily achieved for a sensible
fairness baseline by training on a more privileged group and then transport-
ing the joint predictor probability distribution from a less privileged group
to the joint predictor probability distribution of a more privileged group.
On the average, a particular kind of Pareto improvement can follow. The
more privileged group is not made worse off and the less privileged groups
can be made better off. One might then argue that the risk algorithm dice
are no longer loaded to favor one protected group over another. This strikes
directly at concerns about mass incarceration and it many consequences.

An important distinction is made between internal and external fairness.
With the exception of prediction parity, best examined with conformal pre-
diction sets, achieving external fairness is difficult. A true label for a post-
arraignment outcome is needed that accurately captures an arrest process in
which members of a less privileged group are treated the same as similarly
situated members of a more privileged group. In our application, for exam-
ple, the post-arraignment experience of White offenders can be a reasonable
counterfactual proxy for Black offenders only under extremely strong and
untestable assumptions. Even arriving at effectively identical confusion ta-
bles for White and Black offenders, as we do in Appendix E, is not evidence
of external fairness.

By intervening algorithmically on behalf of members of less privileged
groups, we concurrently introduce a form of differential treatment. This has
a long and contentious fairness history. But in most such circumstances,
some groups arguably are made better off as other groups arguably are made
worse off. Our approach to criminal justice risk assessment can sidestep such
concerns. Still, Pareto improvement for groups must pass political and legal
muster. One hurdle is whether under our approach real and consequential
injuries can be avoided (Lujan v. Defenders of Wildlife, 1992); in U.S.
federal court, “injury in fact” in mandatory. Another hurdle is whether
there would be violations of “equal protection” under the fifth and fourteenth
amendments to the U.S. Constitution (Coglianese and Lehr, 2017: 1191 -
1205), despite our intent make protection more equal.

Finally, there can be concerns about proposing risk procedures, even if
rigorous, that explicitly respond to criminal justice realpolitik. But current
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reform efforts are too often mired in misinformation and factional maneuver-
ing, neither of which improve public discourse. In contrast, our foundational
premises are plain. Past research is consulted. The limits of our methods are
explicit. And, we have shown with real data that they can be successfully
applied.
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A Our Fair Risk Algorithm as Pseudocode

Algorithm 1 presents our fair risk algorithm as a pseudocode.

Algorithm 1: “Fair” Risk Algorithm

Input: Data D = Dw ∪ Db where Dw is the white population data
and Db is the black population data; Coverage probability
1− α.

Output: A “fair” point prediction and prediction interval for the
response.

1 Split the white population data Dw into two parts: white training
data Dw,t and white calibration data Dw,c.

2 Use Dw,t, fit a classifier for the response given the covariates. Call

this f̂white(·) that takes an x from the white joint probability
distribution and outputs a vector of probabilities f̂white(x).

3 Use Dw,c to obtain a conformal prediction set Ĉwhite
α (·) that takes

an x from the white joint probability distribution and outputs a
set of outcomes that is guaranteed to contain the corresponding
white outcome with a probability of at least 1− α. See
Appendix C and Algorithm 3 for more details on constructing
conformal prediction sets.

4 Using the covariate observations in Db and Dw,t, obtain an estimate

T̂ (·) of the optimal transport map, that takes a covariate vector x
from a black joint probability distribution and outputs T̂ (x) which
resembles a white joint probability distribution. See Appendix B
and Algorithm 2 for more details on estimating the optimal
transport map.

5 return the point prediction output of our fair risk algorithm as
follows. If x is the covariate vector of a white person, set ŷwhite as
the highest probability outcome among f̂white(x). If x is the
covariate vector of a black person, set ŷblack as the highest
probability outcome among f̂white(T̂ (x)).

6 return the prediction set output of our fair risk algorithm as
follows. If x is a covariate vector of a white person, return
Ĉwhite
α (x). If x is a covariate vector of a black person, return

Ĉwhite
α (T̂ (x)).
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B An Introduction to Optimal Transport

Suppose we have two distributions P and Q. In our example, think of P as
the distribution of covariates for a population Black offenders and Q as that
distribution for a population of White offenders. We seek to “transport” P
to Q. Given a random vector X from the distribution P , we wish to create
Y = T (X) such that Y has the distribution Q. The function T (·) is called
a transport map taking P to Q. There commonly exists several such maps,
but (under regularity conditions) there is a unique map that minimizes the
distance between X and T (X) while ensuring T (X) has the Q distribution.
In other words, T (X) moves X as little as possible to approximate a random
vector from Q. Such a unique map, denoted by T ∗(·), is called the optimal
transport map.

Several kinds of distances can be used. Probably, the most common
is the Euclidean distance and with this choice, the optimization problem
known at the Monge formulaton, defines the optimal transport map T ∗(·)
given by

T ∗ := arg min
T :T (X)∼Q,

if X∼P

EP [‖X − T (X)‖22].

This means that T ∗ is the minimizer of EP [‖X − T (X)‖22] over all functions
T such that T (X) ∼ Q whenever X ∼ P . This constraint on the functions
T ensures that T ∗ transports P to Q and minimizes the expectation, which
ensures that it is an optimal in that sense.

To illustrate, we use two very simple, univariate distributions: P and Q
each supported on 5 points. Distribution P is supported at 6, 10, 15, 20, 25,
and distribution Q is supported at 10, 12, 15, 20, 30. The probability values
are given by

P (6) = P (10) = P (15) = P (20) = P (25) = 1/5,

Q(10) = Q(12) = Q(15) = Q(20) = Q(30) = 1/5.

Consider two transport maps T1 and T2 that convey values from {6, 10, 15, 20, 25}
into {10, 12, 15, 20, 30}.

T1(6) = 10, T1(10) = 12, T1(15) = 15, T1(20) = 20, T1(25) = 30,

T2(6) = 12, T2(10) = 10, T2(15) = 15, T2(20) = 20, T2(25) = 30.

In words, T1 matches the smallest in the support of P to the smallest in
the support of Q, the second smallest in the support of P to the second
smallest in the support of Q, and so on. In this example, the transport
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map is also the quantile-quantile map. On the other hand, T2 does not
change the same values (i.e., 10 to 10, 15 to 15, 20 to 20). It is easy to
verify that if X has the distribution P , then T1(X) and T2(X) both have
the distribution Q. This illustrates that a map transporting two general
distributions P to Q is not unique. In this example, T1 is the optimal
transport plan minimizing EP [|X − T (X)|2], where the expectation is with
respect to X from the distribution P , over all maps T such that T (X) has
the distribution Q.

For any transport map T , writing Y = T (X), we obtain a joint distri-
bution for the augmented vector (X,Y ) = (X,T (X)), which is a “coupling”
between the distributions P and Q. From this coupling perspective, the
problem of optimal transport can be reformulated in terms of finding that
coupling for a joint distribution whose marginals are fixed at P and Q. This
is called the Kantorovich formulation. Estimation of the optimal transport
plan is undertaken given data from P and Q, not the distributions P and Q
themselves. We will not provide more details, and refer the reader to (Peyré
and Cuturi, 2019; Deb and Sen, 2021; Deb et al., 2021; Hütter and Rigollet,
2021).

We offer pseudocode below (Algorithm 2) for estimating the optimal
transport map T ∗ based on data, drawing on Sections 6.1.1 and 6.1.3 of
Hütter and Rigollet (2021) with minor differences. The problem (4) is a
linear programming task and is the most computing-intensive part of Al-
gorithm 2. Beyond several thousand observations, solving (4) is computa-
tionally prohibitive. A simple work around is to split the data into several
parts, apply Algorithm 2 on each part, and then average the estimates of
optimal transport thus obtained.

Formally, suppose D∗1 and D∗2 are the initial (big) datasets available from
P and Q respectively. Split D∗1 randomly into, say, 10 batches. Call them
D1,1,D1,2, . . . ,D1,10. Similarly, split D∗2 randomly into, say, 10 batches. Call
them D2,1,D2,2, . . . ,D2,10. Apply Algorithm 2 on D1,1,D2,1 to obtain an es-

timate T̂ (1)(·) of the optimal transport map. Similarly, apply Algorithm 2 on
D1,2,D2,2 to obtain T̂ (2)(·), and so on to obtain T̂ (3)(·), . . . , T̂ (10)(·). Because
the datasets D1,j ,D2,j are of sizes 10 times smaller than D1∗,D∗2, problem (4)
becomes more manageable computationally. Finally, set for all x ∈ Rd,

T̂ (x) :=
1

10

10∑
j=1

T̂ (j)(x),

as an estimate of the optimal transport map. For concreteness, here the
data is split into 10 batches, but it can be made into a larger number of
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Algorithm 2: Estimation of optimal transport map

Input: Data D1 = {X1, . . . , Xm} from distribution P (in dimension
d) and data D2 = {Y1, . . . , Yn} from distribution Q (in
dimension d).

Output: A transport map T̂ (·).
1 Find

Γ̂ := arg min
Γ∈Rm×n,Γij≥0∑m

i=1 Γij=1/n,1≤j≤n,∑n
j=1 Γij=1/m,1≤i≤m

m∑
i=1

n∑
j=1

‖Xi − Yj‖22Γij . (4)

This is a linear programming problem and can be solved using the
R package transport.

2 For each 1 ≤ i ≤ m, define

Ŷi := T̂ emp(Xi) =

∑n
j=1 Γ̂ijYj∑n
j=1 Γ̂ij

= m
n∑
j=1

Γ̂ijYj ,

as the transport of Xi (observations in D1).
3 For 1 ≤ k ≤ d, perform non-parametric regression (using kernels,

random forest, RKHS, etc) on the data (Xi, Ŷi,k), 1 ≤ i ≤ m with

the k-th coordinate of Ŷi as the response. This yields a map T̂k(·).
4 return T̂ (x) := (T̂1(x), . . . , T̂d(x)) ∈ Rd for any x ∈ Rd as the

transport of x. This map T̂ (·) serves as an estimate of the optimal
transport map that transports P to Q.
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batches as long as each batch contains “enough” observations.

C An Introduction to Conformal Inference

In the context of regression or classification, prediction can be a major goal,
and there exist several point prediction methods that report an estimate
of the true response. In practice, it is often important to also provide an
uncertainty quantification along with the point prediction. Conformal in-
ference provides such uncertainty quantification. In the context of our data,
we only provide details about conformal inference for classification.

The setting of classical conformal inference is as follows. One has obser-
vations (X1, Y1), . . . , (Xn, Yn) independent and identically distributed from
a distribution P . The goal is to provide a set Ĉα such that

P((Xn+1, Yn+1) ∈ Ĉα) ≥ 1− α, (5)

when (Xn+1, Yn+1) ∼ P . Conformal inference provides a set Ĉα that satis-
fies (5) without any assumptions on the underlying joint probability distribu-
tion P . Furthermore, use can be made of one’s favorite prediction algorithm,
and the validity guarantee holds regardless of what the algorithm employed.

The basic idea of conformal inference is to assign a real valued score
to each of the calibration data points, and a future point is placed in the
prediction set if its score “conforms” with those of the training data points.
There are several ways to construct such scores and all of them lead to a
valid prediction set. In the following, we describe a simple score, and more
complicated score, such as those in Kuchibhotla and Berk (2021), can also
be used to obtain more precise prediction sets.

For a conformal inference procedure for classification, consider a setting
in which the response/outcome Yi takes one of two values 0, and 1. The
pseudocode for the conformal inference with an absolute residual score is
given in Algorithm 3. In the context of our fair risk algorithm (as shown
in Figure 2), Algorithm 3 can be applied from Step 2, because the classifier
p̂(·|·) is given by f̂white(·). In other words, Dw,t and Dw,c in Figure 2 play the

roles of D1 and D2, respectively, in Algorithm 3. Further, f̂white(x) plays
the role of (p̂(0|x), p̂(1|x)) in Algorithm 3.
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Algorithm 3: Conformal prediction for classification

Input: Data splits D1 (training data) and D2 (calibration data),
coverage probability 1− α.

Output: A prediction set Ĉα(·) such that P(Yf ∈ Ĉ(Xf)) ≥ 1− α,
for a future observation (Xf , Yf).

1 Train a classifier p̂(·|·) on the training data D1. This gives a
probability distribution (estimator) for the outcomes for each x,
i.e., we get for each x, probabilities p̂(0|x) and p̂(1|x) such that
p̂(0|x) + p̂(1|x) = 1.

2 For each (Xi, Yi) in the calibration data D2, calculate the conformal
scores s(Xi, Yi) as follows:

3

s(Xi, Yi) := |Yi − p̂(Yi|Xi)|.

4 Compute the (1 + 1/|D2|)(1− α)-th quantile of s(Xi, Yi), i ∈ D2.
Call this quantile γ̂(α).

5 return the prediction set

Ĉα(x) := {y ∈ {0, 1} : s(x, y) = |y − p̂(y|x)| ≤ γ̂(α)} . (6)

D Conditions Under which Internal Fairness Im-
plies External Fairness

Within our fairness formulation, for a risk algorithm used at arraignments
to demonstrate external fairness, an appropriate estimate of the probability
of a post-arraignment arrest must be available. Estimates can be obtained
from the test data on hand, but they characterize criminal justice business
as usual. Such estimates are appropriate for White offenders but not for the
counterfactual of Black offenders who, post-release, are treated by police the
same as similarly situated White offenders.20 In this appendix, we provide
sufficient conditions, under the counterfactual, allowing external fairness for
classification parity, forecasting accuracy parity, and cost ratio parity to be
properly inferred from internal fairness estimates. To this end, we introduce
notation needed to address counterfactual outcomes.

20We focus on police because in practice, it is police who decide whether to make an
arrest. Arrests by citizens are permitted but are extremely rare. Also, we use the term
“offender” throughout to be consistent with our arraignment application.
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Just in our application, there are two possible post-arraignment out-
comes for offenders who are not detained: an arrest for a crime of violence
or no such arrest. Let R ∈ {w, b} denote the race of an offender, say White
(w) or Black (b), and define Y (r) as the counterfactual outcome a person
would experience if, contrary to fact, the person were treated by police as a
person of race r = {b, w}. Consistent with current causal inference thinking,
each person, irrespective of his or her race, is associated with a pair of coun-
terfactual outcomes Y (w), Y (b), depending on how they would be treated
by police were they of a given race, including a race which hypothetically
differs from their actual race. That is, a person of race b is treated as a
person for race w or vice versa.

Incorporating covariates, let Y (r, x) likewise denote the counterfactual
outcome had the person been treated by police as a person of race r = b, w
with covariate values x. In principle, covariates X may be multivariate
and may include both continuous or discrete variables. For instance an
offender’s age usually is a key covariate to consider. Each offender in the
data has a reported age: X = Age. Suppose for a 20 year old Black offender
there are well-defined counterfactual outcomes {Y (w, x) : x = 21, 22, . . . , 50}
corresponding to the person’s outcomes if, contrary to fact, police treated
this individual as White and of age 21, or 22, . . . , or 50 years old. We will
see shortly that the relationship between counterfactual variables Y (r) and
Y (r, x) can be subtle.

Furthermore, for each Black offender, we let Y (r,X(r∗)) denote the per-
son’s counterfactual outcome had the offender been treated by the police
as if he were of race r, with covariate values set to what they would have
been had the offender been of race r∗. For example, suppose X includes age
and number of prior arrests, and set r = r∗ = w. Then, the corresponding
counterfactual Y (r,X(r∗)) = Y (w,X(w)) for a Black offender 26 years of
age with 2 prior burglary arrests such that X = (26, 2) defines his or her
outcome were the Black offender treated by police as if the offender were
White with an age and number of prior burglaries corresponded to a simi-
larly situated white person, such as X(w) = (22, 1). For the Black offender,
therefore, there is a counterfactual Y (w,X(w)) = Y (w,X(w) = (22, 1)).
This follows from our intent to treat Black offenders as if they were White.

Throughout, we make the following consistency assumptions, which pro-
vide a necessary link between various defined counterfactuals. Mainly, we
assume that Y = Y (r) = Y (r,X(r)) almost surely, if R = r. The observed
outcome in the test data for an offender of race R = r, matches the hypo-
thetical outcome the offender would have had were the police to treat the
offender as a person of race R = r, which in turn matches the offender’s
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potential outcome if the police were to treat him or her as a person of race
R = r and covariates X(r) = x. Consistency may fail to hold, for instance,
if a black offender’s outcome depends on another offender’s race or covariate
values in addition to his own. This may arise in settings where an offender’s
arrest may not only depend on the offender’s race but also on the race of
an accomplice. Then, the potential outcome for the black offender may be
ill-defined unless the race of the accomplice is introduced as a covariate.

Formally, suppose our proposed algorithm aspires to forecast the coun-
terfactual Y (w,X(w)) for a Black offender (i.e., conditional on R = b) with
observed covariates X = X(b). Consider the following condition linking the
optimal transport map T ∗ to counterfactual outcomes:

X(w) = T ∗(X(b)) w.p.1, (7)

The assumption essentially states that for each Black offender, the joint
distribution of X(w) and X(b) is degenerate. The assumption is far from
trivial, as illustrated in the simple case where the optimal transport map is
a location shift, i.e., T ∗(x) = x−µ for a fixed constant µ. A violation of the
assumption can arise in this setting if there were a covariate Z, say whether
the offender had a family member who had been incarcerated, that although
not observed in the database, interacts with race to modify the person’s
potential outcome as follows: X(w) = T ∗(X(b)) = X(b) − µ0 − µ1 × Z.
Failing to account for Z would invalidate the equality assumption because
the relationship between the two potential outcomes X(w) and X(b) cannot
be made deterministic unless one also conditions on the unobserved factor
Z.

Finally, consider the following strong ignorability condition, that for
r, r∗ ∈ w, b

Y (r, x) ⊥⊥ R,X(r∗), (8)

which states that there are no common factors that determine both whether
a person of race R and covariates X(r∗) had he been of race r∗ interacts
with the criminal justice system, and how that system would treat offeneder
if he or she were of race r with covariates x.

Under conditions (7) and (8), we prove that

Y (w, T ∗(X(b)))
∣∣R = b,X

d
= Y (w,X(w))

∣∣R = w,X.
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This follows by noting that for any x and x∗ = T ∗(x):

P(Y (w, x∗) = y,X(w) = x∗|R = b,X = x)

= P(Y (w, x∗) = y|R = b,X(b) = x)Pr(X(w) = x∗|R = b,X(b) = x)

= P(Y (w, x∗) = y|R = b, T ∗X(b) = x∗))× 1

= P(Y (w, x∗) = y|R = b,X(w) = x∗))

= P(Y = y|X = x∗, R = w)

establishing the result that the desired distribution (Y ∗ = Y (w, x∗), X(w))|R =
b can be obtained by first sampling T ∗(X) from the covariate distribution of
black defenders, and subsequently sampling Y from the conditional distribu-
tion of white defenders with covariate equal to T ∗(X), matching the output
of our proposed algorithm. Should this hold, external fairness can be said
to be achieved if internal fairness can be established for the proposed algo-
rithm. More precisely, to the extent that classification, forecasting accuracy
and cost ratio parities can be demonstrated, their counterfactual analogues
would in principle be implied by the stated assumptions. One would then
have a firm basis for claiming external fairness.

There are several ways in which these assumptions arguably are unreal-
istic, at least in most jurisdictions in the United States. First, as explained
above, the assumption that the relationship between counterfactual is de-
terministic rules out the existence of latent effect heterogeneity in the asso-
ciation between an offender’s race and the manner in which the offender is
ultimately treated by the criminal justice system. This assumption is some-
times called a rank preservation condition, which implies that for any two
persons i and j, if Xi(b) ≤ Xj(b) for a scalar variable X, then it must be
that Xi(w) ≤ Xj(w), thus ruling out the existence of an unmeasured factor
related to race in a manner that can alter the ranking of potential covariate
values.

For the location shift example previously described with say µ0 = 0
and µ1 = 5, then X(w) = T ∗(X(b)) = X(b) − 5 × Z. It is possible that
Xi(b) = 4 ≤ Xj(b) = 6. However Zi = 0 while Zj = 1 so that Xj(w) =
1 ≤ Xi(w) = 4. The rank preservation is violated. Even in this simple
example, rank preservation assumption, which is not empirically testable,
may be difficult to justify because of a large number of omitted variables,
particularly in practical settings where X is multivariate.

The independence condition (8) is likewise unrealistic because it rules out
any common factor associated with the race of an offender and a potential
apprehension outcome. It also rules out any unmeasured common cause of
an offender’s covariates and an apprehension outcome, conditional on race.

41



Given the role of race in myriad social institutions and interactions, claims
that such relationships are absent would in practice strain credibility.

E Confusion Table Results for Black Test Data
When the Response Variable as well as The Pre-
dictors are Transported

Stakeholders and others often focus primarily on fairness represented in con-
fusion tables from test data. In deference to those individuals, we applied
optimal transport to the Black test data in a manner that included in the
joint probability distribution the response variable as well as the predictors.
Table 3 is virtually the same as Table 1 within sampling error. The compa-
rability is striking. For example, we compared the base rates from the test
data for White offenders and the transported test data for Black offenders.
For both, the base rate was approximately .075. 7.5% of both Black and
White offenders were rearrested after an arraignment for a violent crime.
We emphasize the base rate equivalence because the base rate is so central
in formal fairness discussions (Kleinberg et al., 2017).

Table 3: Transported Test Data Confusion Table for Black Offenders Using
White-Trained Algorithm (30% Predicted to Fail, 7.5% Actually Fail)

Actual Outcome No Violence Predicted Violence Predicted Classification Error
No Violence 2658 1042 (false positive) .28

Violence 135 (false negative) 166 .45
Forecasting Error .05 .86

If one is prepared, as in common practice, to evaluate fairness solely using
the test data in a confusion table, optimal transport provides an effective
equalizer. One may have politically acceptable risk algorithm. One is also
externally fair for predictive parity because no outcome label is required.
And, if one is comfortable assuming that in reality, Black offenders will be
treated on the average the same as similarly situated White offenders after
an arraignment release, external fairness is achieved more generally. But for
most stakeholders, this last step will stretch credibility.

In short, although interpretations for fairness will vary, one has made all
of the confusion table results for White offenders and Black offenders the
same. All of the tradeoff concerns are bypassed as long as one is prepared
to assume that if a confusion table is good enough for White offenders,
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it is good enough for Black offenders. Note that such claims go only to
the aggregate confusion table results by which one might evaluate a risk
algorithm overall. It says nothing about the operational issues required for
forecasting.
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Peyré, G., and M. Cuturi, M. (2019) Computational Optimal Transport
With Applications to Data Science. NOW Publishers.

Pooladian, A.-A., and J. Niles-Weed (2021) “Entropic Estimation of Trans-
port Maps.” arXiv:2109.12004v1 [math.ST]

Robert Wood Johnson Foundation (2017) “Discrimination in America: Ex-
periences of Views of African Americans. ”https://media.npr.org/assets/
img/2017/10/23/discriminationpoll- african-americans.pdf

Rocque, M. (2011) “Racial Disparities in the Criminal Justice System and
Perceptions of Legitimacy: A Theoretical Linkage.” Race and Justice
1(3): 292 – 315.

Romano, Y., Barber, R.F., Sabatti, C., and E.J. Candes (2019) “With
Malice Toward None: Assessing Uncertainty via Equalized Coverage.”
axXIiv: 1908.05428v1 [stat, ME]

Rothenberg, P.S. (2008)White Privilege Catherine Woods.

Rucker, J.M., and J.A. Rocheson (2021) “Toward an Understanding of
Structural Racism: Implications for Criminal Justice,” Science 374
(6565): 286 – 290.

Skeem, J., and C. Lowenkamp (2020) “Using Algorithms to Address Trade-
Offs Inherent in Predicting Recidivism.” Behavioral Science and Law
38: 259–278.

49

http://arxiv.org/abs/1809.02244
http://arxiv.org/abs/2109.12004


Shafer, G., and V. Vovk (2008) “A Tutorial on Conformal Prediction.”
Journal of Machine Learning Research 9: 371 – 421.

Si, N., Murthy, K., Blanchet, J., and V.A. Nguyen (2021) “Testing Group
Fairness via Optimal Transport Projections.” Proceedings of the 38th
International Conference on Machine Learning, PMLR 139.

Sorenson, S.B., Sinko, L., and R.A. Berk (2021) “The Endemic Amid the
Pandemic: Seeking Help for Violence against Women in the Initial
Phases of COVID-19.” Journal of Interpersonal Violence published
online March, 2021.

Starr, S.B. (2014) “Evidence-Based Sentencing and the Scientific Rational-
ization of Discrimination. Stanford Law Review 66: 803 – 872.

Stewart, E.A., Warren, P.Y., Hughes, C., and Brunson, R.K. (2020) “Race,
Ethnicity, and Criminal Justice Contact: Reflections for Future Re-
search,” Race and Justice 10 (2): 119 –149.

Tibshirani, R.J., Barber, R.F., Candès, E.J. and A. Ramdas (2020) “Con-
formation Prediction Under Covariate Shift.” arXiv: 1904.06019v3
[stat.ME].

Thompson, W.C., and E.L. Schumann (1987) “Interpretation of Statistical
Evidence in Criminal Trials: The Prosecutor’s Fallacy and the Defense
Attorney’s Fallacy.” Law and Human Behavior 11: 167 – 187.

Tonry, M. (2014) “Legal and Ethical Issues in The Prediction of Recidi-
vism.” Federal Sentencing Reporter 26(3): 167 – 176.

Van Cleve, N.G. and L. Mayes(2015) “Criminal Justice Through “Color-
blind” Lenses: A Call to Examine the Mutual Constitution of Race
and Criminal Justice.” Law & Social Inquiry 40(2): 406 – 432.

Vovk, V., Gammerman, A., and G. Shafer (2005), Algorithmic Learning in
a Random World, NewYork: Springer

Vovk,V., Nouretdinov, I., and A. Gammerman (2009), “On-Line Predictive
Linear Regression.” The Annals of Statistics 37: 1566 – 1590.

Wacquant, L. (2002) “From Slavery to Mass Incarceration: Rethinking the
‘race question’ in the US.” New Left Review 13:41 – 73.

Wallis, J. (2017) America’s Original Sin Brazos Press.

50



Wyner, A.J., Olson, M., Bleich, J, and D. Mease (2015) “Explaining the
Success of AdaBoost and Random Forests as Interpolating Classifiers.”
Journal of Machine Learning Research 18(1): 1–33.

Yates, J. (1997) “Racial Incarceration Disparity Among States.” Social
Science Quarterly 78(4) 1001 – 1010.

Zafar, M.B., Martinez, I.V., Rodriguez, M.,B., and K. Gummadi. (2017)
“Fairness Constraints: A Mechanism for Fair Classification.” In Pro-
ceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS). Fort Lauderdale, FL, 2017.

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and C. Dwork (2013) “Learning
Fair Representations.” Proceedings of Machine Learning Research 28
(3) 325 – 333.

51


	1 Introduction
	2 Defining Fairness for Protected Groups
	2.1 Some Complications in Practice
	2.2 Counterfactuals: Internal and External Fairness

	3 Achieving A Fair Criminal Justice Risk Assessment Procedure
	3.1 Training The Classifier
	3.2 Transporting Observations Across Protected Groups
	3.3 Forecasting for Individual Cases
	3.4 Diagrammatic Summaries of Our Risk Algorithm

	4 The Data
	5 Fairness Results
	5.1 Algorithmic Performance Results for White Offenders 
	5.2 Optimal Transport Performance

	6 Evaluating Fairness in the Algorithmic Determinations of Risk
	6.1 Results for Conformal Prediction Sets

	7 Conclusions
	A Our Fair Risk Algorithm as Pseudocode
	B An Introduction to Optimal Transport
	C An Introduction to Conformal Inference
	D Conditions Under which Internal Fairness Implies External Fairness
	E Confusion Table Results for Black Test Data When the Response Variable as well as The Predictors are Transported

