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Abstract

There have been many claims in the media and a bit of respectable
research about the causes of variation in firearm sales. The challenges
for causal inference can be quite daunting. This paper reports an anal-
ysis of daily handgun sales in California from 1996 through 2018 using
an interrupted time series design and analysis. The design was intro-
duced to social scientists in 1963 by Campbell and Stanley, analysis
methods were proposed by Box and Tiao in 1975, and more recent
treatments are easily found (Box et al., 2016). But this approach to
causal inference can be badly overmatched by the data on handgun
sales, especially when the causal effects are estimated. More impor-
tant for this paper are fundamental oversights in the standard sta-
tistical methods employed. Test multiplicity problems are introduced
by adaptive model selection built into recommended practice. The
challenges are computational and conceptual. Some progress is made
on both problems that arguably improves on past research, but the
take-home message may be to reduce aspirations about what can be
learned.

*The California Department of Justice provided the background check data. Dorina
Domi helped assemble information on potential interventions. To both I am grateful. Very
useful feedback on an earlier version of this material was provided in response to an invited
presentation to the Stanford/Berkeley Online Causal Inference Seminar in April of 2021.
The discussant, John Donohue, was especially insightful. Thanks go to Susan Sorenson
for educating me on firearm policy. A singular thanks to Arun Kumar Kuchibhotla for
walking me through the multiple testing theory for post-model-selection inference.



1 Introduction

The interrupted time series design was introduced to biomedical and social
science researchers in the early 1960s (Campbell and Stanley, 1963). Its ob-
jective was to find a change in level or slope caused by an exogenous, discrete
intervention for equally spaced longitudinal observations. An early applica-
tion documented the impact of harsher penalties for speeding on yearly
automobile crash fatalities (Campbell and Ross, 1968). Shortly thereafter,
Box and Tiao (1975), building on the analysis of time series data, provided
statistical procedures for the design that substantially furthered credible
statistical and causal inference. Textbook treatments followed (Gottman
and Glass, 1978; McDowell et al., 1980; Cryer and Chan, 2008: chapter 11;
McDowell et al., 2019) along with related work in econometrics (Granger,
1980; Hamilton, 1994, Hendrey, 1995).

The strong quasi-experimental structure coupled with state-of-the-art
methods of analysis provided a promising tool for the study of criminal
justice interventions. Reforms that otherwise would be difficult to evaluate
could be treated as social experiments (Campbell, 1969). Criminal justice
researchers from a variety of academic disciplines recognized the potential
(e.g., O’Carroll et al., 1991; Holmes et al., 1992; Webster et al., 2006; Vujié,
et al., 2016; Studdert et al., 2017; Levine and McNight, 2017; Liu and Wiebe,
2019).

Despite additional advances in methods for analyzing data from inter-
rupted time series designs (Box et al., 2016: Part 3), recent developments in
statistics and econometrics have raised important concerns. They center on
the way model specifications are inductively determined as an integral part
of the data analysis, followed by statistical tests confidence intervals under-
taken with the same data. Recommended practice rests heavily on trial and
error, guided by a variety of time series diagnostics. Over the past decade,
powerful theoretical results have shown that such practices can be misguided
(Leeb, and Potscher, 2005; 2006; 2008). Pejorative characterizations include
data snooping, fishing, data dredging, and p—hackingﬂ

Inductive model specification can introduce the well-known “multiplicity
problem.” Multiple statistical tests and confidence intervals are undertaken

!The issues are very general. They are not limited to time series model specification.
Kuchibhotla and colleagues (2021:2) broadly address obtaining “valid inference after data
exploration” (VIDE), with “exploration” to include a range of analysis activities such as
examining correlation matrices, studying diagnostics of residuals, transforming response
variables to stabilize their variance, and relying on automated procedures such as stepwise
regression or the lasso.



as part of the same data analysis ignoring any inferential consequences. In
particular, a nominal critical value for «, such as the .05 level, is no longer
the actual critical value. The actual critical level is larger, often very much
larger. One consequence is a greater risk for Type I errors; null hypotheses
are more easily rejected when they are true. The result is false discoveries
that contribute to current reproducibility controversies in the social and
biomedical sciences (Ioannidis, 2005; 2012; Scholler, 2014).

There are excellent monographs and textbooks on different kinds of mul-
tiplicity problems and a wide range of proposed remedies (Bretz et al., 2011;
Maxwell et al., 2017: chapter 5; Shirairshi et al., 2019). However, existing
treatments do not extend multiplicity concerns to model specification. In-
deed, trial and error specification procedures are commonly recommended
in respected sources for a variety of popular data analysis methods as if
multiple testing were irrelevant (Weisberg, 2014: Chapters 9-10).

This paper addresses the multiplicity problem for interrupted time se-
ries analysis. The approach taken is an extension of work in statistics on
post-model-selection statistical inference that has emphasized cross-sectional
data (Berk, 2013; Tibshirani et al., 2016; Lee et al., 2016; Kuchibhotla et
al., 2021). In the pages ahead, solutions for interrupted time series data
are offered, although for formal conceptions of causal inference, important
interpretive complications remain. The issues are illustrated with an inter-
rupted time series analysis of the possible impact of an assault weapons ban
on handguns sales in California.

To set the stage, Section 2 provides a brief overview of analysis proce-
dures for the interrupted time series design. With the problem to be ad-
dressed introduced, Section 3 summarizes generic solutions for multiplicity
difficulties and remedies that can be appropriate for interrupted time series
data. In Section 4, the focus turns to post-model-selection inference for in-
terrupted time series data. Section 5 introduces the data that are analyzed
in Section 6. Conclusions are offered in Section 7.

2 A Brief Overview of Analysis Procedures for an
Interrupted Time Series Design

The power of interrupted time series analyses derives from a substantial
number of equally spaced, temporal observations before and after an in-
tervention of interest. Potential confounders that change gradually can be
statistically controlled by adjusting for apparent trends as part of the model
specification, even if the sources of such trends are unknown. The major



threat to internal validity is other abrupt events that overlap in time with
the principal intervention. If they are known in advance or easily recognized,
they often can be controlled as part of the model specification. However,
that can turn a model specification problem into estimation problem insofar
as the principal intervention and abrupt confounders are substantially cor-
related. Such concerns typically favor very spare models. The data analysis
discussed later proceeds in this fashion.

The standard exposition of time series analysis, including the role of
interventions, is found in a justly famous book by G.E.P. Box and several
colleagues that has gone through five editions (Box et al., 2016). Beneath
the details, an analysis of data from an interrupted time series design is es-
sentially a regression analysis with dependent disturbances, much as in the
spirit of parametric, generalized least squares. Many of the usual statistical
intuitions carry over, but there can be important differences in the particu-
lars. For those interested in these specifics, they are summarized in the next
four pages. Some readers may prefer to skip to the next section.

All frequentist statistical inference requires a stochastic process respon-
sible for generating the data. Sometimes the data are generated by a re-
searcher using random assignment or probability sampling. The former is
standard in randomized control trials. The latter is standard in sample sur-
veys. However, there are a wide variety of settings in which a valid data
generation mechanism must be postulated.

The analysis of data from an interrupted time series design begins with
an assumed underlying data generation process derived from a limitless,
linear combination of weighted, white noise perturbations going back forever
in time. More formally,

Yi = et +re—1 +1oep—a. .., (1)

where for times (), (t — 1), (t — 2),...,(t — 00), the Yy are a time series of
values, the e() are white noise perturbations, and the v are weights that
can differ over perturbationsﬂ

In words, an observed time series such as automobile crash fatalities
each year is assumed to be generated by a linear combination of white noise
“shocks” with all but the most recent weighted by a corresponding constant.
The signs and relative sizes of the weights determine the dependence in Y;.

2The white noise perturbations are generated i.i.d; they are independently realized
from a single probability distribution with a mean of 0.0. Sometimes the distribution is
assumed to be normal. For large samples, the normality assumption is, in practice, not
important.



For example, if the weights close in time to Y; are large, values of the time
series more proximate in time will be more strongly related than values of
the time series that are less proximate in time.

Constraints are placed on the weights. In particular, it is common to
require that

D Wt < oo and E(Y;) = 0. (2)
t=1

The sum of the squared weights is bounded, and the expectation of the time
series is 0.0. In combination, the two define a common form of “weak” sta-
tionarity; the time series is centered on a mean of zero with Cov (Y, Y;_p) =
ag Z?io ¢i¢i+kE| This means that the time series has a stable level, and the
covariance between observations depends only on the the number of time pe-
riods between them (i.e., k). Neither the expected level nor the covariance
change with respect to any arbitrary displacement of time. Stationarity is
essential for the full array of time series analysis statistical tools to perform
properly.

The white noise perturbations are unobservable, and the researcher only
gets to see y;, which are realizations Y;. Consequently, all subsequent mod-
els are approzimations of the true data generating process (Box et al., 2016:
Section 1.3; Chapter 6). Because the time series can be altered by one or
more interventions, accommodations are made for fixed exogenous variables.
But, no claims are made the any specification is correct by the usual regres-
sion definitions. Moreover, the approximation does not need to be unique.
Several different approximations can suffice.

The approximations for an interrupted time series take the general form:

yt:f(’{aC7t)+Nta (3)

where f(k,(,t) is the mean function m,; with xk denoting parameters such as
regression coefficients, ¢ denoting interventions each represented as a step
function or pulse, and ¢ as an index for time.

The mean function m; can take a variety of forms, often called “transfer
functions” in the time series literature. Figure [I| shows some common ex-
amples. An intervention is coded as a 1 or 0 for step function S; or as a 1 or
0 for pulse function P;. A pulse has only a single value of 1 when the inter-
vention occurs with all other values equal to 0.0. The size of the immediate
impact on y; is determined by the value of w. The time path of that effect

3The centering at 0.0 is not formally necessary. Centering on some other expected
value will suffice. The time series then varies around some other constant than 0.0.



Illustrative Transfer Functions
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Figure 1: Some Common Means Functions for Step Functions (S;) and
Pulses (P;)

is determined by the value of 6. In Figure (I} § < [1.0|. Five different time
paths are shown along with their corresponding mean functions. Allowance
can be made for more than one intervention, but even with a large number
of observations, multiple interventions can lead to substantial instability.

There can be, however, an important role of additional regressors in the
mean function, whether seen as interventions or not. Their job is to adjust
for possible confounding even when they are not part of the subject-matter
account. Much as in the spirit of RCTs, the goal is not to construct a
general model of some phenomenon, but to estimate the impact of one or
more “treatments.”[]

Ny is a function for the residuals whose main purpose is to “mop up” any
remaining dependences that would otherwise undermine statistical tests and
confidence intervals. Commonly, it has an ARMA form ¢(B)N; = 0(B)a,
with B a polynomial backward shift operator and a; a new white noise

“In some settings, the interrupted time series design is seen as a special case of single
subject designs, which do not yield general models, but an estimate of an intervention’s
causal effect.



disturbanceﬁ An ARMA formulation allows for lagged values of the response
variable 1; and lagged values of the new white noise perturbations a;. The
“AR” component denotes an autoregressive process. The “MA” denotes a
moving average process. Rarely is either given an explanatory role. The
heavy causal inference lifting is done by the mean function m;.

The ARMA structure is often extended in two waysff| First, to address
deterministic trends that would violate the required stationarity, the time
series data can be differenced. A first difference, represented as A(y;) = y¢ —
Y1, removes a linear trend. A second difference, represented as A2(y;) =
(vt —yt—1) — (Yt—1 — Yt—2)] = Y+ — 2(y¢—1) + yt—2, removes a quadratic trend.
Higher order differencing removes higher order trends. The goal is to restore
stationarity violated by a change in level. One now has an ARIMA model
for the disturbances instead of an ARMA model[]

Second, to address “seasonal” dependence in the residuals, a seasonal
ARIMA formulation is often employed in a multiplicative form. The sea-
sonal formulation captures dependence at lags with gaps. With a daily time
series, for instance, a seasonal ARIMA structure can consider dependence at
lags of 7 days, such that there is a temporal association between all Sundays,
all Mondays, and so on, for each day of the week. In other words, all Sun-
days are more alike than all Sundays and all Mondays. The dependence can
be removed by including seasonal differencing, seasonal AR terms, and/or
seasonal MA terms. The multiplicative specification provides for interac-
tion effects. For example, the dependence between a; and a;_q1 can differ
depending on day of the week. There may be a stronger dependence between
Mondays and Tuesdays than between Sundays and Mondays.

Rarely is the approximation’s specification known before the data are
examined. There is a range of empirical specification aids routinely used.
Graphical representations combined with statistical tests can be applied to
the residuals of the mean function in search of acceptable forms for MN;.
Many different prospective functions for m; and N; can be estimated, and
the residuals examined. The goal is to find at least one specification of m;
and NV; for which one cannot reject the null hypothesis that a; is a white
noise process. Any specification meeting this requirement is an acceptable

(1= B — By = Y+ — yt—1 — yi—2 is an example of a polynomial backward shift
operator that produces y: for three different time lags.

5The notation becomes rather involved, and will not be provided here. A very accessible
treatment can be found in the textbook by Cryer and Chan (2008: Chapter 10).

"The “I” in ARIMA denotes the possible use of differencing and stands for integration.
This is misleading because ARIMA models are based on difference equations for which
the analog to integration is summing, which reverses differencing.



approximation. There can be several such approximations; the model se-
lected need not be the only satisfactory one.

Some specifications require an estimator for nonlinear regression relation-
ships. There are effective maximum likelihood and conditional least squares
estimators that can work Wellﬁ Unfortunately, the lagged relationships often
produce strong associations between the estimated parameters, leading to
very unstable results and sometimes convergence failures. There also can be
inadvertent parameter redundancy (Box et al., 2016: Section 7.3.5) There-
fore, model specification must be highly selective in the predictors chosen.
The usual intuitions for cross-sectional data are insufficiently precautionary.
These issues are revisited later when the application is undertaken.

To summarize, model specification for an intervention analysis in time
series traditions is a cherry picking exercise. Even if several approximations
ultimately are selected, there is a price to paid for searching over many
prospective models and picking a few (or one) for causal interpretation.
It does not matter whether statistical tests were actually used to inform
the searching. They are implicated anyway; all cherry picking becomes a
multiple testing problem. To consider these issues more specifically, the
next section provides a brief exposition of multiple testing problems and
solutions.

3 A Brief Overview on the Multiplicity Problem

There are many ways to formulate the multiple testing problem. Emphasized
here is an approach that dovetails well with the analysis of interrupted time
series data. A simple, widely used, exposition will suffice. Readers already
familiar with the Bonferroi and max-t corrections for multiplicity may prefer
to skip to Section 4 where post-model-selection inference is discussed as a
multiple testing problem.

For a given dataset, there is more than a single null hypothesis to be
tested, often many. Each test is evaluated separately at some nominal,
critical value «, often set in advance to .05 or .01. A null hypothesis is
rejected if, under the null hypothesis, the test statistic, such as a t-statistic,

8The least squares solution is called conditional because one needs information before
the earliest value of y: to implement estimation (e.g., y+ depends on y¢—1). Such values are
determined as form of imputation that often is quite simple. For example, an unobserved
y4—1 may be imputed using the empirical mean of the time series. Imputations become
more complicated with longer lags common in seasonal ARIMA formulations. The least
squares estimates are conditional on such imputations. Fortunately, any biases that result
become less important the more time series observations available going forward.



would occur with a probability less than or equal to a. The same decision
rule is used for each test. Concerns center on incorrect rejections of null
hypotheses that are true, sometimes called “false positives” or Type I error.
With o = .05, say, Type I error is tolerated for a single test only 5% of the
time. The weight of the empirical evidence must be strong before the null
hypothesis is rejected. This protection is eroded when more than one test
is undertaken.

For a = .05, let m equal the number of statistical tests undertaken.
For m = 2, the actual critical value is 1 — (1 — a)™ = .0975, which is
substantially larger than .05, and it increases rapidly with number of tests.
With 10 tests, the operational critical value is approximately .40, nearly an
order of magnitude larger than .05. One has “fake” power leading to a much
greater chance of Type I errors. Fake power can be seductive, and is one of
the explanations offered for the “reproducibility crisis” in science, especially
in the biomedical and social sciences (Ioannidis, 2005; 2012; Schooler, 2014).

Fake statistical power can materialize in more complicated ways that
depend on the null hypotheses tested and the manner in which the data
are generated (e.g., regression coefficient contrasts for a linear regression
model). It follows that the proposed corrections are many and varied, often
with power concernsﬂ In this paper, we focus on problems that can arise for
parametric regression models, especially as they are applied to time series
data. But they apply to nonparametric models as well.

3.1 Two Error Rate Definitions

Table [1} taken from Bretz and colleagues (2001: page 12), can be used to
help formulate the error rate definitions. For a particular study, there are
m statistical tests overall. For example, a study of sentencing might begin
with tests for disparities in median sentence lengths between different racial
and ethnic groups. The null hypothesis is that the difference in medians
between any two racial or ethnic groups is 0.0. If there are 5 such groups,
there are 10 statistical tests. In Table [}, therefore, m = 10.

The observable counts W and R are the number of times the null hypoth-
esis is not rejected and the number of times the null hypothesis is rejected,
respectively. Because one does not know in advance the actual number of
times the null hypothesis is true (i.e., mg) or the number of times the null

9A Type II error is not rejecting a false null hypothesis. If the probability of a Type
IT error is denoted by 8 (e.g., .2=0), power is 1 — 8. Just as for Type I error, there are
several different definitions are Type II error in a multiple testing context (Bretz et al.,
2011) that lead to different definitions of power.



Table 1: Outcomes from Multiple Statistical Tests

Hypotheses Not Rejected Rejected Total
True U (Correct Result) | V (Type I error) mo
False T (Type II error) | S (Correct Result) | m —mg
Total W R m

hypothesis is false (i.e., m — myg), the cell counts U through S also are
unknown. For instance, U in this case could be any integer from 0 to 10.

For a given a value of m and a given critical value «, many different
definitions of the multiplicity error have been proposed (Bretz et al., 2011:
Section 2.1). Immediately below are arguably the two most common defini-
tions of multiplicity error.

e Familywise Error Rate: FWER=P(V > 0) — the probability in a set
of m hypothesis tests that there will be at least one Type I error.

e Fulse Discovery Rate: FDR=E(V/R|R > 0)P(R > 0) — the expected
proportion of incorrectly rejected null hypotheses for all R rejected null
hypotheses (i.e., the expected proportion of rejected null hypotheses
that are Type I errors).

The FWER is equal to or larger than the FDR, because the FWER addresses
the probability of at least one false discovery whereas the FDR addresses the
expected proportion of false discoveries. No matter which of the two defini-
tions is used, the goal is to employ statistical tests that provide a guarantee
that the FWER or the FRD are controlled at the intended threshold. For
example, the FWER intended threshold P(V > 0) might be a conventional
« = .05. Special techniques that adjust for multiple tests are needed to
guarantee that that P(V > 0) is not greater than .05. Similar reasoning
applies to the FDR.

Control can be of two types. The control is weak if it applies only when
all of the null hypotheses are true. This is sometimes called the “global null
hypothesis.” Control is strong if it applies to all possible configurations of
true and false null hypotheses. Strong control is desirable because although
in practice a researcher will not know how many null hypotheses actually
are false, it is unlikely that the research would have been undertaken unless
some were thought to be. Controlling strongly for FWER with a given value

10



of @ automatically controls strongly for the FDR using that same « (Bretz
et al., 2011: 14).

3.2 The Bonferroni Correction

It is only modest exaggeration to see the Bonferroni correction as the “mother”
of all multiplicity corrections. For, m independent tests of true null hypothe-
ses Hy, Hs ... H,,, and rejection probabilities P(R;),P(Rz2)...,P(R,,) each
set to a, a Bonferroni adjusted critical value o* is (Rice, 1995, 11.4.8),

o =P(Ry or Ry or...Ry,)
<P(R1) +P(Ry) + -+ P(Ry,) (4)

= mao.

The first line in Eq. [ defines the actual p-value o* that is being used
because of m statistical tests. It is the probability that any true null hy-
pothesis will be rejected. By the second line Eq. [4] this must be equal to
or less than the sum of the probabilities of rejecting the null hypothesis at
a given value of a;, which in line 3 equals ma. In other words, a researcher
thinks that null hypotheses are being rejected at a when they are really
being rejected at ma.

The Bonferroni correction is easily implemented. A new critical level
a/m can be employed instead of a. For example if m = 8 and a = .01, the
adjusted probability threshold for “statistical significance” is .001. More
formally, let ¢ denote a particular computed p-value p;. A computed p-value
p; must be equal to or less than .001 for the null hypothesis to be rejected.
Equivalently, o = .01 can be retained, and each p; adjusted upward such
that ¢; = mp;. For p; = .03, say, ¢; = .24.

The Bonferroni correction imposes strong control over the familywise
error rate even if some of the null hypotheses are truly false. Bretz and
colleagues (2011: 31) show that

P(V>0) =P || Ja <)
Mo

< ]P’Z(Qi <a) (5)
Mo

o
<mop— < a.

The first line in Eq. [5], for the union of properly rejected tests, is the rela-
tionship one is seeking. However, it cannot be directly computed because

11



the potential dependence between the tests is unknown. The next two lines
show relationships that, when there is dependence, the Bonferroni correction
is conservative. It overcorrects such that power is reduced unnecessarily and
confidence intervals are too wide. Also, the guarantee is asymptotic unless
the relevant variables are normally distributed. This is no different from the
properties of a conventional t-test, although the asymptotic requirement for
non-normal data is too often ignored.

The loss of power because of dependent tests is usually the primary
motivation for a host of Bonferroni variants that can recover at least some
the losses. Each has its idiosyncrasies, and performance will usually depend
on the nature of any dependence between the test statistics. For example,
the Holm procedure (Holm, 1979)“uniformly improves on the Bonferroni
approach” (Bretz et al., 2011: 32) by using a step by step procedure. All
p-values are ordered from small to large. The data analyst then proceeds
in that same order, one p-value at a time, applying a variant of the usual
Bonferroni correction that takes the number previous steps into account.
Looking at Eq. [d the value of m is reduced by 1 at each step so that
there are smaller Bonferroni corrections as the stepping from 1 to m p-
values proceeds. However, the reliance on the Eq. 4| means that the Holm
procedure still can be conservative because the upper bound guarantee of
P(Ry) +P(R2) + - - - + P(R,,) remains.

Another way to improve power is to abandon the FWER in favor of the
FDR and use a step by step approach in the spirit of the Holm procedure
(Benjamini and Hochberg, 1995). Independent test statistics formally are
required, but more recent work has proved that satisfactory results can be
obtained if there are positive associations between the test statistics for
the true null hypotheses (Benjamini and Yekutieli, 2001)@ Once again,
however, there can be tradeoffs. The Benjamini and Hochberg approach
offers greater power than the classical Bonferroni approach, but at the price
of more Type I errors (Bretz et al., 2011:14).

3.3 A Max-t Correction

A major disadvantage of Bonferroni correction and it variants is the reliance
on an upper bound guarantee. Greater power can be obtained from direct
estimates of the test statistic distribution itself (Romano and Wolk, 2005;

0ne can sometimes make progress with superficially small changes in the error rate
definition. For example, the positive false discovery rate pFDR = E[%|R > 0]. This
addresses difficulties that can result if no null hypotheses are rejected (Bretz et al., 2011:
13-14), which can easily happen when power is weak.

12



2017). For this, consider the “max-t” correction (Bretz et al., 2011: 21). Us-
ing the FWER definition of error and resampling procedures, one can bypass
the Bonferroni upper bound while automatically adjusting for multiple, de-
pendent t-statistics. If the distribution of the t-statistics is well estimated,
corrected p-values follow. Building on the distribution of t-statistics is a
powerful approach that can counter even very aggressive forms of p-hacking.

The formulation is relatively straightforward. Suppose one is comparing
the proportion of probation sentences given by different judges in a partic-
ular jurisdiction. Suppose there are 8 such judges, leading to twenty-eight
pairwise comparisons. The global null hypothesis is that all of the proportion
differences are equal to 0.0; all judges have the same probability of giving
a sentence of probation. The value of a set at .05. But, the operational
p-value is .76. There actually is a 76% chance that a “statistically signif-
icant” difference in proportions will be found for at least one comparison
even if the global null hypothesis is trueE The usual Bonferroni correction
would require a probability of .002, rather than .05 to reject the global null
hypothesis, but the .002 level is conservative insofar as the 28 tests are not
independent.

Alternatively, one can construct, say, 100 bootstrap samples of the data@
For each, 28 t-tests are computed, and the largest of the 28 stored. There
would be 100 such maximum values of the t-statistic from which one has
a bootstrap estimate of the sampling distribution of the largest t-statistics
over realizations of the data that automatically and properly allows for any
dependence between tests. The .025 quantile and the .975 quantile then
provide the two thresholds for rejection regions, assuming a two tailed test.
To reject the global null hypothesis, at least of one of the original 28 t-
statistics must fall in either of the rejection regions. Max-t procedures will
have more power than the Bonferroni correction for a given value of «, with
no increase type I error. These ideas form the foundation for how multiple
testing challenges for an interrupted time series analysis are addressed later.

"1n practice, more would need to be known about how the data were generated to make
such a claim. For example, a simple random sample of judges from the jurisdiction could
justify such a claim.

121f the data were originally generated as a simple random sample of all judges in
a jurisdiction, the “plain vanilla” nonparametric bootstrap would provide valid results,
although the bias-corrected accelerated bootstrap, might perform somewhat better (Efron
and Tibshirani, 1993: chapter 14). For dependent data, such as a time series, one must
use a dependence-aware resampling method for which there are several options. One such
option is employed later.
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Figure 2: A Bimodal Sampling Distribution for 31 Depending on the Model
Selected

4 Post-Model-Selection Statistical Inference

Within its frequentist framework, classical statistical inference requires that
each null hypothesis is specified before the data analysis begins. Because
statistical tests will vary depending on the model, canonical statistical infer-
ence for modeling requires that the model also is specified before the data are
examined. If a model is developed as part of the data analysis, estimation,
statistical tests, and confidence intervals can be badly compromisedE
Suppose, for example, a linear regression model needs to be specified.
There are five predictors X1, Xo,..., X5. 1, the regression coefficient for
X1, is one parameter of interest. A researcher applies a model selection
procedure such as forward stepwise regression, although less formal means
could be used instead. Figure [2] shows some important consequences for the
1 sampling distribution for over i.i.d realizations of the data. Because X;
is only chosen for a selected model when 3 is substantially different from
0.0, a bimodal sampling distribution results. The required normal sampling

131t is a bit like a poker game in which no player is allowed to look at the cards any
opponent is holding. Bets are placed with no direct knowledge of any opponent’s hand.
If a player is caught peeking, even briefly, the game is immediately halted. Cheating has
occurred.
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distribution will not materialize, even asymptotically. All classical statistical
inference loses its desirable properties. This presents a major challenge for
valid post-model-selection inference.

There is no argument about the consequences for post-model-selection
inference. Formal proofs have existed for over 15 years that go well be-
yond baldly inappropriate research practices such p-hacking, data dredging,
and data snooping (Leeb, and Pd&tscher, 2005; 2006; 2008). The risks are
no less for inductive statistical procedures such as all subsets regression,
recursive partitioning, model revisions after examining diagnostic plots or
specification tests, and analysis procedures such as smoothing whose tuning
parameter values commonly are determined as part of the fitting process
(Berk et al., 2009).

Post-model-selection inference can be productively reformulated as si-
multaneous inference (Kuchibhotla et al., 2021). It begins with a universe
of models that could be realized, specified by the researcher in advance of the
data analysis. This is not a statistical task. It is informed by subject-matter
knowledge and how the data were generated. For example, it matters if a
variable that is important for the subject matter is absent in the collected
data. Models that contain the omitted variable should be excluded from the
universe of models. No such models could be realized not matter how well
they correspond to subject-matter knowledge.

For that modeling universe, there can be a limitless number of i.i.d data
realizations. For each realization of the dataset and each possible model
there are parameter estimates. The estimate for any given parameter will
usually vary over models unless the corresponding predictor is uncorrelated
with all other predictors. And even for that same parameter and same
model, estimates likely will vary over data realizations.

Using this formulation, there is a multidimensional confidence region
containing, with some high probability such as .95, all of the parameter
estimates over the full universe of models. The confidence region has the
same number of dimensions as the number of parameters whose estimates
are being sought. For a single parameter, the confidence region is a line
representing a conventional confidence interval. If there are two parameters,
the region is a plane. If there are three such parameters, the confidence
region is a solid such as an ellipsoid. With more than three dimensions one
has an higher-dimensional solid such as a polytrope.

There is a duality between confidence regions and statistical tests (Rice,
2007: Section 9.3). A confidence region can be translated into one or more
statistical tests and vice versa. This leads directly to the Bonferroi formu-
lation based on the familywise error rate discussed in the previous section
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(Kuchibhotla et al., 2021: 8). Asymptotically, the usual guarantee applies.

As before, the Bonferroni correction is inherently conservative, although
now for an additional reason. The 1 — « guarantee is over all models in
the universe of models, not just for the selected model. One gains a form
of insurance protection no matter what model the selection processes deter-
mines, but at a price. That price is arguably worth paying for interrupted
time series models. Recall that no claims are made that a chosen model is
in any sense the correct model or uniquely preferred.

As discussed earlier, there are more powerful 1 — a guarantees that can
work for the familywise error rate. The max-t approach is one. Because it
relies on the bootstrap, dependence between estimates is properly incorpo-
rated automatically, unlike for the Bonferroni approach. Power is increased.
And the resampling results can be used more widely than for statistical tests
or confidence intervals.

There are other approaches to post-model-selection inference that do not
rest on simultaneous inference for the full model universe. They exploit in-
formation from a selected model and its selection procedure (Kouchibhotla
et al., 2021: Section 3). These methods also can offer some gains in power
but are less desirable for an interrupted time series analysis. There is no
reason to treat any approximate model as special, especially when it is not
likely to be uniquely superior. In addition, each new selection method re-
quires its own derived, multiplicity correction, and the data analyst must
adhere to the prescribed model selection method no matter what the results.
Also, dependent data can present complications.

5 Data

Over the past year, there has been growing pressure in the U.S. to “do
something” about virtually unfettered access firearms. A range of policy
interventions has been proposed building in part on past experiences with
firearm policy in the U.S. and elsewhere (Cook, 2018; Carlson, 2020; Negin et
al., 2021). California has been an important testbed. The interrupted time
series analysis to follow considers whether sales of handguns were affected
by a California assault weapon ban legislated in 1999 and implemented in
the 2000.

There are 8400 daily observations from 1996 through 2018[™ Reported
for each day is the number of handgun background checks undertaken. In

" The data provided had a bit more than 8400 daily observations. But for the earliest
several months, the data were incomplete. Those months were removed.
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Daily Handgun Sales in California 1996-2018
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Figure 3: The Number of Daily Handgun Background Checks in California
Showing an Upward Trend and Large Peaks and Valleys (N=8400)

California, these checks are considered a good proxy for handgun sales.
California has universal background checks such that, in addition to sales
through federally licensed firearm dealers, private sales must be processed
by a federally licensed firearm dealer; both kinds of transactions are subject
to a background checks. The terms “background checks” and “handgun
sales” will be used interchangeablyﬁ

Figure [3|is a time series plot of the sales dataE Its mean is 729 sales
per day with a standard deviation is 467. Clearly, daily sales are substantial

5Parenthetically, there is no evidence that California’s universal background checks
reduce firearm mortality (Castillo-Carniglia et al., 2019)

16The figure and all to follow in this section were constructed after the interrupted time
series model was specified and implemented. They were not used in model specification.
They provide a context for the results reported in the Section 6.
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Figure 4: Histogram of Daily Number of Handgun Background Checks
(N=8400)

and growing with considerable day-to-day variation. There are also many
dramatic peaks and valleys, and a curious gap toward the bottom of the
plot. Distinct differences exist between days when many dealers are likely
be closed (i.e., Sundays and holidays) and days when it is business as usual.
For the analysis that follows, it is unlikely that the gap makes a material
difference because Sundays and holidays are included as an indicator variable
in the interrupted times series model.

The large peaks and valleys are revealed differently in Figure The
histogram has a long right tail with values nearly an order of magnitude
larger than most daily sales figures. There are also some days with less that
100 sales. The distribution poses difficult analysis challenges.
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Figure 5: Correlations Between Candidate Variables for the Interrupted
Time Series Analysis

Much as in the spirit of RCTs, the impact of the assault weapons ban is
the single intervention of interest. Although within other design traditions
one could certainly try to construct a general model of factors affecting hand-
gun sales, for an interrupted time series analysis, other predictors treated
as covariates are included primarily to adjust for possible confounding and
increase precision.

From that perspective, Figure |5 shows the correlations between candi-
date covariates as well as their associations with daily handgun sales. In
order from top to bottom on the left margin are the sales outcome variable,
four legislative or judicial interventions that might directly affect firearm
sales, three widely publicized mass shootings of the sort linked previously
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to firearm sales in California (Studdert et al., 2017; Webster, 2017)), the
terms of President Obama and President Trump, also thought to be related
to firearm sales (Depetris-Chauvin, 2015; Studdert et al., 2017), days of the
week, and holidays. Although Figure [5| might have influenced the model
specification, it was on purpose constructed afterwards.

From 1996 through 2018, there were over 30 legislature initiatives or
court decisions that might affect handgun sales. Of primarily interest, de-
termined before looking at the data, was the only intervention that directly
limited the sale of a very popular kind of firearm; Senate Bill 23 clarified and
expanded the kinds assault weapons banned by the California Roberti-Roos
Assault Weapons Control Act of 1989. SB 23 was passed by the state leg-
islature in 1999 and became law on January 1st, 2000. Other intervention
possibilities were the ban on .50 caliber rifles, the ban on rimfire pistols,
and the Harrott court decision in June of 2001 that upheld the ban but
required that banned assault weapons be identified by make and model, not
just descriptive features such as barrel lengthm

One can see in Figure [p| that all four legislative or legal interventions,
coded as step functions, are positively correlated at modest to high levels.
Had all four been included, multicollinearity likely would be a problem,
especially for an interrupted time series analysis.

The San Bernardino mass shooting was the only such incident that oc-
curred in California. San Bernardino lies 60 miles east of Los Angeles.
Las Vegas is in Nevada and about 225 miles northeast of San Bernadino.
Proximity favored San Bernardino. For this analysis, a mass shooting is
represented by a pulse.

The presidential terms of Obama and Trump were separately coded as
step functions, “1” while in office and “0” otherwise. Given the timing
of Senate Bill 23, no dependency problems with the principal intervention
were anticipated. Presidencies can raise concerns among some about 2nd
amendment rights.

Handgun sales vary by day of the week. But, including days of the week
was also a potential source of multicollinearity. Because they are categories
of the same nominal variable, there are necessarily negative correlations
between them. As a potential solution, an indicator variable was constructed
coded “1” for Sundays and holidays and otherwise “0.”

The statistical analysis was undertaken in R with the procedure arimax

"Rimfire pistols and .50 caliber rifles were not in common use or in great demand.
Rimfire pistols were small caliber (e.g. .22 caliber), but typically equipped with high
capacity magazines, while .50 caliber rifles were designed for military use, and especially
for snipers, who might require an effective range of a mile or more.
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from the TSA library. The five regressors xj ... x5 were included as a linear
combination, just as one would for a linear regression analysis@ Every
model examined included the same five exogenous regressors: four covariates
and one intervention.

e r1: The Obama presidential terms as a step function, a covariate
with a positive effect expected on handgun sales consistent with earlier
studies and numerous anecdotes;

e 15: The Trump presidential term as a step function, a covariate with
a negative effect on handgun sales expected in contrast to the Obama
presidency;

e z3: Sundays and holidays as a pulses, a covariate with a negative effect
on handgun sales expected because many firearm dealers are closed on
such days;

e z4: The San Bernardino mass shooting as a pulse, a covariate with
an increase in handguns sales expected, consistent with earlier studies
and numerous anecdotes; and

e r5: The SB 23 assault weapons ban, the intervention of interest, in-
cluded as a step function with a reduction in handgun sales expected.

A seasonal ARIMA formulation is commonly represented as ARIMA (p, d,
(P, D,Q)k, where p and P are the orders of AR terms, d and D are the or-
ders of differencing, and ¢ and @ are the orders of MA terms. The small
letters specify the nonseasonal component. The capital letters specify the
seasonal component with a seasonal lag of k.

For the seasonal ARIMA component, a lag of 7 days seemed appropri-
ate. Because the same days of the week were anticipated to affect handgun
sales in similar ways, seasonality nonstationarity was likely. Hence, a first
difference was included. The MA term was included to pick up short term
dependence from random perturbations for the same days of the week. The
seasonal specification was determined before the data analysis began and is
a form commonly used for seasonal models.

In contrast, the terms for the nonseasonal component were allowed to
vary. The arguments p,d, and ¢ each could take on a value of 0, 1, or 2

B More formally, m: = wo + wiz1 + -+ + wsxs. No ¢ parameters were included (see
Figure [1)) because they would introduce additional lagged values of y;. After the analysis
was completed, exploration was undertaken with one or more § parameters included. As
expected, in almost every case, the fitting algorithm failed to converge. On the rare
occasion when it did, there were warning messages.
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because any combinations of these values seemed reasonable a priori. For
example, before looking at the data, there was anecdotal information that
handgun sales had been increasing over time, which would ordinarily make
differencing worth exploring. Short-term dependence is a universal concern
in most time series data, which motivated a consideration of AR and MA
terms.

This thinking led to 27 combinations of values yielding 27 models as
the relevant model universe. Estimates for each model parameter for each
model were computed, and the usual model diagnostics were evaluated (Box
et al., 2016: Chapter 8): autocorrelation functions for the residuals, partial
autocorrelation functions for the residuals, the augmented Dickey-Fuller t-
statistic for stationarity (Box et al. 2016: Section10.1.2), and moreH

The preeminent goal was to find models for which the residuals were con-
sistent with white noise. White noise residuals imply that all dependence in
1+ has been removed, including the impact of both gradual and abrupt con-
founders. Although one can construct a few (improbable) counter-examples,
confounders that are not properly addressed by the mean function will usu-
ally be evident in the residual diagnostics. In this case, the residuals for each
model were roughly consistent with white noise, implying that the mean
function and seasonal component by themselves were a good start (i.e., no
matter what form the nonseasonal ARIMA component took). The model
ultimately selected achieved a very close approximation of white noise resid-
uals, had estimates of the intervention parameters with excellent precision,
and offered plausible substantive interpretationsm

6 Results

As a sanity yardstick, Figure[6]shows the correspondence between the actual
number of daily background checks and the fitted number of daily back-
ground checks. Overall trends seem to be well captured along with many
large peaks and valleys. There is no reason at this point to abort a more
thorough model evaluation.

Figure [7| shows the results for the autocorrelation function of the residu-
als. The largest autocorrelation is less than .10. Autocorrelations less than
.20 rarely cause estimation problems. The horizontal dashed lines show plus

19Because of the very large number of observations, statistical tests were not helpful.
Statistical power was excessive such that trivial departures from the null hypothesis were
“statistically significant.” See Greenland et al. (2016) for a general discussion.

20Expanding the polynomials, the full noise model selected took the following form.
N =Ni—1+ N7 — Ny—g +a¢ — b0rai—1 — O2ai—7 + O3a:—s.
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Figure 6: Fitted Values Overlaid on Observed Background Checks with an
Upward Trend and Many Peaks and Valleys Approximated Well (N=8400)
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Figure 7: Residual Autocorrelation Function for the “Best” Model

or minus two standard errors. With 8400 observations, the error band is
very narrow at autocorrelations of +.025. Clearly, there is excessive power.
In fact, the residuals look to be a good approximation of white noise@

Figure[§|shows a bootstrap sampling distribution for the assault weapons
ban parameter estimate. The normal QQ plot is close to a straight line, con-
sistent with an asymptotic normal distribution. The sample size apparently
is sufficient, and the fitting algorithm properly converged for the selected
model.

Further encouraged, Table[2] contains the estimates for all predictor coef-

210ne could respecify the noise model to remove the small spike at a lag 7 days. But
that is likely to be an exercise in “whack-a-mole.” Another very small spike would likely
appear at different lag.
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Figure 8: Bootstrap Sampling Distribution for the Assault Weapons Ban
Estimate Showing an Approximately Normal Sampling Distribution
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ficients and their associated t-statistics 22 All but one of the coefficients have
t-statistics well above the threshold needed for “statistical significance” at
«a = .05, and larger t-statistics than needed for the recommended o = .005
(Benjamin et al., 2018). Consistency between the estimates and the ex-
pected relationships adds credibility to the analysis.

The assault weapons ban appears to reduce handgun sales by an ex-
traordinary 634 a day, but uncertainty corrections need to be made for post-
model-selection inference. A conventional Bonferroni correction is provided
for all statistical tests in Table 2, adjusting for the specification search over
27 models. The Bonferroni corrected t-statistic threshold is 4-2.87, which is
substantially larger than the unadjusted threshold of £1.96. Nevertheless,
all but one of the null hypotheses are still rejected. The effect of the assault
weapons ban is still statistically significant at well beyond o = .0002@

Table 2: Coeflicient Estimates and t-Statistics: Bonferroni Corrected t-
Statistic Is +-2.87

Interventions Coefficient | t-statistic
Obama, 462 7.11
Trump 42 0.46
Sundays and Holidays -714 3.15
San Bernardino 839 6.08
Assault Weapon Ban -634 -8.57

The Bonferroni correction is well known to be conservative. As intro-
duced briefly earlier, we also applied a max-t correction. To account for
dependence in the handgun sales data, we used a wild bootstrap with a
Bartlett kernel to capture short term dependence of 7 days (Shao, 2010).
Figure[d]is a diagrammatic rendering of the approach. For each of 100 boot-
strap samples, all 27 models were fitted and the largest t-statistic for the 27
models stored, leading to 100 max-t values. The 100 values provided an esti-
mate of the max-t sampling distribution from which appropriate thresholds

22(Coefficients for the noise model N, are rarely interpreted and are not shown in the
table.

ZThere is no need for simultaneous inference across all coefficients at once because the
principal research question is the effect of the assault weapons ban. This is fully consistent
with the intent of interrupted time series designs and analysis. The covariates are included
to address confounding and prevision, not to inform subject matter questions, although
in this case they are consistent with much earlier work.
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Figure 9: Diagrammatic Explanation for Estimating the Max-t Distribution
for the Assault Weapon Ban Coefficient

were calculated by calibration using the .975 and .025 quantiles. In this case,
the results were about the same as for the Bonferroni correction and are,
therefore, not reported in Table [2 The likely explanation for no apparent
improvement in power is the dependence in the handgun sales time series.
Resulting instability created a long tailed coefficient distribution. Evidence
is discussed shortly when Figure [10]is examined.

If the discussion of results ended at this point, the interrupted time series
dataset looks to have been properly analyzed and has yielded credible results.
The trial and error approach to model specification inflated statistical power,
which the multiplicity corrections effectively addressed. In this case, true
power was sufficient. The assault weapon ban appears to cause a dramatic
reduction in handgun sales.

6.1 Complications

One must be clear about what the multiplicity correction is doing. For each
model from the universe of models, the estimand of primary interest is the
coefficient for the assault weapon ban. However, just as for conventional
linear regression, that coefficient’s definition depends on how the model is
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specified (Wickens, 1995: Section4.l; Weisberg, 2014: Section4.1.3). Dif-
ferent models necessarily define the estimand differently because different
adjustments for possible confounding are being undertaken.

Whereas there is a single causal effect to be estimated for the assault
weapons ban, there are 27 different estimands of that causal effect. More-
over, each model is explicitly an approximation of the linear, data generation
process. One has 27 “wrong” models with 27 disparate “wrong” estimands.

Recent thinking in statistics (Buja et al., 2019a; 2019b) is consistent with
such results. One has 27 different estimands, each of which is a“regression
functional of interest.”@ Unfortunately, there seems to be no way at the
moment to get from a set of different causal estimands to credible causal
inference about a single “real world” intervention.

Nevertheless, it may be possible to make a credible case at least for the
sign of the regression functionals. If one has used a multiplicity correction
based on resampling, such as max-t, one can examine the signs of the es-
timated functionals over models and samples. Ideally, positive or negative
signs dominate. Figure [I0] shows the coefficient distribution for the assault
weapons ban estimates. 94% of the signs are negative. Across the 27 models
with 100 bootstrap samples each, negative associations dominate. The best
bet is that the ban reduced sales. Other fallback positions will be discussed
shortly.

Figure[10]also speaks to the earlier of concern about an absence of power
gains for the max-t correction compared to the Bonferroni correction. A
relatively large number of coefficients are to the left of -1000. These are
somewhat atypical and arguably implausible. Looking back at Figure
makes clear that from 1996 to 1999, before the assault weapon ban, there was
only one day with 1000 sales or more. A decline of 1000 sales per day shortly
after the ban would have consistently produced the curious statistical result
of negative sales. Such difficulties can be caused by very unstable parameter
estimates that, in turn, undermine meaningful power gains. Still, even for
the questionable coefficient estimates, most of the signs are negative. The
predominance of negative estimates is robust to model specification.

But for this particular application, unfortunately, there are major de-
ficiencies in how well the assault weapons ban corresponds to a properly
defined intervention. The ban applied to assault weapons and yet, back-
ground checks are a proxy for sales of handguns only. Although one can

24Tt can be helpful to think about each regression functional as a partial correlation
coefficient in its original units. There are 27 different measures of the association between
the assault weapon’s ban and daily handgun sales, depending on the model.
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Figure 10: Distribution of Assault Weapons Ban Coefficient Estimates
Across the Universe of 27 Models: 94% of the signs were negative.
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certainly speculate about how the two could be a causally connected, there
is no consequential evidence available.

The nature and timing of the intervention also is unclear. Very public,
heated discussions about an assault weapon ban began in 1999, months
before the legislation was introduced. Media coverage was extensive. There
were widely covered public hearings. Once AB 23 was passed, some time
elapsed before it was signed by the governor. On January 1st of 2000,
implementation began. In August of 2000, the original “generic” assault
weapons ban passed in 1998 was affirmed in the Kasler v. Lockyer. The
revisions under AB 23 were affirmed and clarified in Harrott v. County
of Kings in June of 2001. Subsequently, a variety of gun-related legislation,
such as a ban on high capacity magazines, was passed, also with considerable
publicity.

The nature and timing of the intervention has implications for the pos-
sible causal mechanisms operating. If reductions in sales stems from actions
of gun dealers, who refused to make sales in violation of the assault weapons
ban, then an intervention date of January 1st, 2000 might be justified. Yet,
why were handguns sales affected? And what about the role of legal chal-
lenges and other legislation? If the reduction in sales stems from the actions
of prospective handgun buyers, publicity surrounding may be important. In
that context, an intervention date of January 1st 2000 seems arbitrary.

After examining the results, the data were re-analyzed twice, in an ex-
ploratory fashion, using the selected model with the intervention date moved
forward two months or back two months. For both, the estimated coefficient
for the assault weapons ban became small and positive, much like the esti-
mated effect of the Trump presidency. This evidence underscores the risks
inherent in trying to determine the intervention’s timing and content. In
retrospect, such challenges probably are common for a wide variety social
interventions responding to hot-button issues.

7 Conclusions

A credible analysis of data from an interrupted time series design requires
that the intervention(s) be clearly defined and the appropriate locations in
time determined. For legislative interventions, this can require substantial
background information on the legislative history, related legislative initia-
tives, judicial decisions, and media coverage. It also helps if potential causal
mechanisms linking an intervention to an outcome can be clearly articulated.
These recommendations probably apply to a wide variety interventions well
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beyond gun policy.

It is best to avoid data-driven model specification. When possible, re-
lying on earlier research and credible theory is ideal. At a minimum, the
mean function should be specified before looking at the data. Because sev-
eral different noise functions likely will remove any remaining dependence,
a relatively simple seasonal ARIMA formulation may well to suffice. After
examining the results, model diagnostics should be employed and perhaps
alternative models estimated. Statistical tests and confidence intervals no
longer have their usual validity guarantees and should be avoided. These
explorations go to the credibility of the model originally selected. They are
not a means to replace the first model with a preferred alternative. This is
just a restatement of the usual confirmatory/exploratory distinction (Tukey,
1978).

If inductive model selection cannot be avoided, a multiplicity correction
and related diagnostics should be employed. Statistical tests and confidence
intervals can then have valid performance guarantees, although some cor-
rections will be conservative and others may be challenging to properly im-
plement. The results must be interpreted with caution because of unsolved
problems linking multiple estimands to a single causal effect. A more pru-
dent approach is to interpret the estimated causal effects as only a form of
association, controlling for other predictors in the model. One has regression
functionals of interest, nothing more.

Supporting evidence may be available in the distribution of parameter
estimates over bootstrap samples if a resampling approach such as max-
t is used. Ideally, the vast majority of signs will be positive or negative.
The message will be that across the universe of potential models, one can
determine the likely sign of any causal effect; does the intervention make
things better or worse? For many interventions, a conclusion of this sort
could be very instructive.

More generally, no single investigation is likely to be definitive. Credible
evidence depends on a collection of well-executed studies. All research needs
to build on earlier results. For the analysis of data from an interrupted time
series design, working collaboratively within a scientific community is a way
to help avoid post-model-selection problems. Models for later studies are
determined by the results from earlier studies.
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