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Abstract

Risk assessment algorithms used in criminal justice settings are

often said to introduce “bias”. But such charges can conflate an algo-

rithm’s performance with bias in the data used to train the algorithm

and with bias in the actions undertaken with an algorithm’s output.

In this paper, algorithms themselves are the focus. Tradeo↵s between

di↵erent kinds of fairness and between fairness and accuracy are illus-

trated using an algorithmic application to juvenile justice data. Given

potential bias in training data, can risk assessment algorithms improve

fairness, and if so, with what consequences for accuracy? Although

statisticians and computer scientists can documents the tradeo↵s, they

cannot provide technical solutions that satisfy all fairness and accu-

racy objectives. In the end, it falls to stakeholders to do the required

balancing using legal and legislative procedures, just as it always has.

1 Introduction

The recent introduction of “Big Data” and machine learning into the opera-
tions of criminal justice institutions has gotten a mixed reception. For some,
the promise of decisions both smarter and more fair has led to qualified sup-
port (Ridgeway, 2013a,b; Brennan and Oliver, 2013; Doleac and Stevenson,
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2016; Ferguson, 2017). “Smart policing” is one instance. For others, the
risks of inaccuracy and racial bias dominate any likely benefits (Harcourt,
2007; Starr, 2014; O’Neil, 2016; Angwin et al., 2016). Racial bias inherent
in the data used by criminal justice agencies is carried along and magnified
by machine learning algorithms; bias in, bias out.

Computer scientists and statisticians have responded with e↵orts to make
algorithmic output more accurate and more fair, despite the prospect of
flawed data. Better technology is the answer. But is it? Perhaps even the
best algorithms will be overmatched. Perhaps better technology can only
go so far. In the end, perhaps the most challenging issues will need to be
resolved in the political arena. These are the matters addressed in this paper.

Much past work on algorithmic bias make algorithms the fall guy. But
critics are correct that training data can really matter. Moreover, common
applications of criminal justice algorithms provide information to human de-
cision makers. It is important to distinguish between that information, hu-
man decisions informed by the information, and subsequent actions taken
(Kleinberg et al., 2017, Stevensen, 2017). Concerns about algorithmic bias
properly are raised only about an algorithm’s internal machinery.

There is a formal literature on algorithmic accuracy and fairness that can
be directly consulted, and good summaries of that literature exist (Berk et
al., 2017). However, the expositions can be quite technical and integrating
themes are too often lost in mathematical detail. A di↵erent expositional
strategy is o↵ered here. The issues will be addressed through empirical ex-
amples from a dataset rich in accuracy and fairness challenges: predictions of
recidivism for juvenile o↵enders. The real world setting will make the tech-
nical content more grounded and accessible. Credible unifying conclusions
can then be more easily drawn.

Four broad points will be made. First, there are many kinds of unfairness
so that “bias” can materialize along several dimensions. There can be, for
example, inequality of treatment, inequality of opportunity, and inequality
of outcome. Second, there will be tradeo↵s between di↵erent kinds of unfair-
ness with some irreconcilable in most real applications. Third, there will be
tradeo↵s between accuracy and fairness. If an algorithm is designed to be
optimally accurate, anything that introduces additional objectives can lead
to reduced accuracy. Finally, it is the job of statisticians and computer sci-
entists to document the various tradeo↵s in an accessible manner. But the
balancing required to address the tradeo↵s is not a technical matter. How
the tradeo↵s will be made is a matter of competing values that will need to
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be resolved by legal and political action.

2 Background

Literature reviews of juvenile criminal justice risk assessments reveal that
risk assessments for juveniles and risk assessments for adults raise most of
the same issues. (Pew Center on the States, 2011; Vincent et al., 2012;
National Institute of Justice and O�ce of Juvenile Justice and Delinquency
Prevention, 2014; O�ce of Juvenile Research and Delinquency Prevention,
2015). There are concerns about accuracy (Meyers and Schmidt, 2008; Oliver
and Stockdale, 2012) and concerns about fairness (Huizinga et al., 2007;
Schwalbe, 2008; Thompson and McGrath, 2012). Di↵erences center on the
kinds of predictors used and arguably a greater emphasis on determining
needs and treatment modalities for juveniles.1 The discussion to follow cen-
ters on the themes of accuracy and fairness.

There is also a small but growing literature addressing more directly
the ethnical and legal issues (Hyatt et al., 2001; Tonry, 2014; Ferguson,
2015; Hamilton, 2016; Barocas and Selbst, 2916; Janssan and Kuk, 2016;
Zliobaire and Custers, 2016; Kroll et al., 2017). Many important matters are
addressed, but not at the level of detail required by this paper. Algorithmic
methods have advanced very rapidly. Material to follow will suggest that
legal and ethical thinking has fallen behind. The intent is to make important
algorithmic details more apparent so that legal scholars are better able to
engage.

2.1 The Empirical Setting

The empirical setting is a particular state’s department of juvenile services.
A juvenile enters the system through a “complaint,” which most commonly
comes from police after an arrest. But parents, teachers, social workers or
any citizen may file a complaint. Once a complaint is received, an intake
o�cer determines whether the complaint should be dismissed, whether the
individual should be placed under informal supervision, whether diversion
to community-based services is appropriate, or whether a petition for court
action should be filed. This decision is shaped by procedural requirements

1
The recent development for adults of “generation four” risk assessments may right the

balance (Desmarais and Singh, 2013).
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and administrative guidelines filtered through the experiences of each intake
o�cer. Many complaints are resolved without court action.

For any court action, the intake o�cer recommends whether detention
is necessary prior to adjudication. At that point, a juvenile may be placed
in community detention, which can include electronic monitoring, day and
evening reporting, or private alternative programs. The subsequent adju-
dicatory hearing determines whether a juvenile is delinquent or in need of
supervision. If so, there can be a “sentence” served either at home, under
community supervision, in an out-of-home residence, or for those determined
to be dangerous to themselves or others, in a secure institution. After release
from an institution, there is “aftercare” much like parole for adults.

The decision made by an intake o�cer can be very challenging and will
rest in part on a projection of “future dangerousness.” Concerns about vi-
olent crimes necessarily are very salient. In principle, the decision could be
informed by an actuarial forecast of risk. Accuracy might well be improved
over current methods, but there would also be legitimate concerns about
fairness. Any forecasting tools should address both. It is important to em-
phasize that at intake, subsequent actions by a juvenile court or the juvenile
services agency cannot be known. Consequently, those actions cannot be
used by the intake o�cer for forecasting. How long an individual will be
“under supervision” is also unknown at intake and cannot be used to project
risk.

2.2 Data

Data were assembled with which to forecast at intake a juvenile’s new com-
plaint for a violent crime. Included were all juveniles referred to the state’s
department of juvenile services at least once during calendar year 2006. Some
individuals had multiple referrals within this time frame. The first complaint
during 2006 (including all associated o↵enses) was considered the “current”
complaint. All o↵enses before the current complaint were treated as “priors.”
Any violent o↵ense that took place after the current complaint was defined
as a “failure.” Violent o↵enses included assault 1st degree, attempted mur-
der, attempted rape, carjacking, manslaughter, manslaughter by automobile,
murder 1st degree, murder 2nd degree, rape 1st degree, rape 2nd degree, and
robbery with deadly weapon. Operationally, all failures were referrals to the
department of juvenile services or an arrest as an adult. The vast majority
of referrals were the product of an arrest.
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In this paper, the term “failure” and the term “arrest” are e↵ectively the
same. Consistent with the strong preferences of the department of juvenile
services, the reference category for an arrest for a violent crime was an arrest
for another kind of crime or no arrest at all. Also consistent with their strong
preferences, arrests that counted could occur while a juvenile was under the
department’s supervision as long as that supervision was not detention in a
secure institution.

The juvenile o↵ense history file was downloaded at the end of December,
2010. Each individual had up to a 5 year follow-up in the juvenile system. In
addition, adult data were downloaded in July, 2011 which extended by one
year the follow-up period for arrests as an adult.2

Predictors available at intake on a regular basis included all of the fol-
lowing.

1. Race

2. Gender

3. The number of prior escapes

4. The number of prior felony complains

5. The number of prior misdemeanor complaints

6. The number of nonviolent prior complaints

7. The number of violent prior complaints

8. The number of sex-crimes prior complaints

9. The number of prior weapons complaints

10. The number of prior drug-related complaints

11. The total number of prior complaints

12. The age at which there was a first arrest

13. The age at release from supervision

2
The actual length of the follow-up period depended, therefore, on the age at intake.

We use that later as a predictor.
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14. An escape as the current complaint

15. A drug-related o↵ense as the current complaint

16. A felony is the current complaint

17. A misdemeanor as the current complaint

18. A violent crime as the current complaint

19. A nonviolent crime as the current complaint

20. A sex crime as the current complaint

21. A weapons crime as the current complaint

22. The total number of current charges

In most settings, there are value-based objections to using race as a pre-
dictor. However, race is needed to help reveal and adjust for any race-based
unfairness in algorithmic results. Race is not used below when an algorithm
is applied but is used to understand the fairness of fitted values and subse-
quently to increase fairness.3

2.3 Statistical Methods

The algorithmic procedure used was XGBoost (Chen and Guestrin, 2016).
XGboost is a form of gradient boosting drawing heavily on work by Jerome
Friedman (2001; 2002), but with a number of clever innovations that in-
crease processing speed enormously. There is also a large number of tuning
parameters that with su�cient work can improve performance.

A form of gradient boosting was the method chosen because so much of
the literature on fairness builds on risk scores, often in the form of the fitted
probabilities for a binary outcome. Random forests would have provided
similar accuracy, but no defensible risk scores. Support vector machine would
have also forecasted well, but can struggle with large datasets and requires

3
If race is a powerful predictor, one has a simple example of a fairness-accuracy tradeo↵.
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selecting a predictor kernel that formally cannot handle categorical predictors
like gender and race.4

The risk scores produced by XGBoost were used to construct conventional
confusion tables. With one exception discussed later, a threshold of .50 was
imposed on the fitted probabilities. Values greater than .50 led to an assigned
outcome class of an arrest for a violent crime, and values equal to or less than
.50 led to an assigned outcome class of no such arrest. Confusion tables were
constructed as usual by cross-tabulating the actual outcome class against the
assigned outcome class. From the tables, measures of accuracy and fairness
were calculated.

Boosting algorithms do not formally converge and in principle, one can
boost forever. The number of iterations is usually determined by some mea-
sure of fitting error such as the residual deviance. Fitting stops when fitting
error appears to stop declining.5 But this determination is not very precise
and substantial overfitting, especially of the risk scores, is a genuine threat.
In response, we fit the data for the first analysis with training data and report
out-of-sample results using a holdout sample as test data.6

We found little evidence of overfitting. Therefore, for all subsequent anal-
yses, we pooled the training and test data to increase the sample size. For
each analysis, the fitting error used to determine the number of iterations
was the 5-fold cross-validation residual deviance.

4
Although categorical variables can be coded as indicator variables with a numeric 1

and a numeric 0, those values are arbitrary. Formally, any two numeric values would do.

But because of the dot products needed to construct the predictor kernel, the arbitrary

values chosen for the indicator variables actually matter.
5
Because some forms of boosting introduce sampling of the training data (i.e., stochastic

gradient boosting), the fitted values contain noise which can make it di�cult to determine

when a measure of fit is no longer decreasing. The same problem arises if a cross-validation

measure of fitting performance is used. In response, some data analysts require that the

the lack of improvement continue for several consecutive iterations before the iteration is

halted.
6
The sample of 33,847 observations was randomly split into training data of 20,000 ob-

servations and test data of 13,847 observations. There seems to be no commonly accepted

approach for determining the relative sizes of the training sample and the test sample

although a number of recommendations have been made (Faraway, 2014).
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3 Accuracy and Fairness in the Empirical Re-
sults

Table 1 was constructed from the test data, although the training data
yielded nearly the same results. A re-arrest for a violent crime is called
a “positive,” and the absence of a re-arrest for a violent crime is called a
“negative.” This is consistent with common practice.

Starting at the first row of the left-most column, the base failure rate is
relatively low: the probability of a violent crime arrest is .10. Nevertheless,
because of concerns about violence, juvenile justice stakeholders imposed a
5 to 1 costs ratio on the forecasting errors: false negatives were to be treated
as five times most costly than false positives. In other words, it was thought
to be 5 times worse to release a juvenile who later was arrested for a violent
crime than to hold a juvenile who could have been released with no risk.
The 5 to 1 target cost ratio was built into the results by the way in which
the algorithm was tuned.7 In practice, it is extremely di�cult to arrive
empirically at the exact target cost ratio, and in this case, the empirical cost
ratio of 5.45 to 1 for false negative to false positives is shown in the second
row and first column of Table 1. Cost ratio di↵erences as large as plus or
minus 1.0 in this case made no material di↵erence in the results.

Performance Measure Full Sample White Subset Black Subset

1. Arrest Base Rate 0.10 0.04 0.14

2. Cost Ratio 5.45 7.07 to 1 4.88 to 1

3. Forecast Arrest 0.26 0.17 0.33

4. False Positive Rate 0.22 0.16 0.28

5. False Negative Rate 0.40 0.17 0.36

6. Arrest Forecasting Error 0.78 0.89 0.75

7. No Arrest Forecasting Error 0.05 0.03 0.07

Table 1: Test Data Performance Measures For Gradient Boosting Results For
A Violent Crime Arrest (Training data N = 20,000, Test data N = 13,487,
White N = 6,208, Black N = 7,639)

Calibration is commonly cited as a highly desirable property of risk fore-
casts (Kleinberg et al., 2016; Chouldechova, 2016). A risk instrument is

7
For XGBoost, probably the most convenient way to tune for a target cost ratio is by

weighting.
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calibrated if for a binary outcome the forecasted probability of failure (or
success) is the same as the actual probability of failure (or success). In this
application, the actual and forecasted probability of a re-arrest for a violent
crime should be the same.

However, calibration can be extremely di�cult to achieve in practice. One
major obstacle is the absence of important predictors in the data. Another
major obstacle is measurement error in the predictors or the outcome to be
forecasted. In addition, it is e↵ectively impossible to achieve calibration if the
cost ratio of false negatives to false positives is not 1.0. Indeed, calibration
only makes formal sense when the costs for both kinds of errors are the same.8

For these data, Table 1 shows in the third row that the forecasted arrest
probability of .26 is much larger than the actual base rate probability of .10.
The larger forecasted probability is to be expected because the preferred
cost ratio of 5 to 1 makes false positives relatively cheap. In response, the
algorithm will favor the less costly false positives over the more costly false
negatives. Consequently, there is a larger number of individuals incorrectly
forecasted to be re-arrested then if the cost ratio were, say, 1 to 1. This is not
an algorithmic error. The gradient boosting procedure properly is responding
to expressed stakeholders’ policy preferences that trade a relatively large
number of false positives to find the true positives.

A false positive rate (i.e., the probability of a false positive) is the prob-
ability that when the truth is a negative, the algorithm classifies the case
as a positive. Here, that it the probability that an individual is incorrectly
classified as a bad risk. From row 4 in Table 1, the false positive rate is .22.
Nearly 80% of the time, the algorithm correctly classifies a true negative as
such.

A false negative rate (i.e., the probability of a false negative) is the proba-
bility that when the truth is a positive, and the algorithm incorrectly classifies
the case as a negative. Here, that is the probability the algorithm incorrectly
classifies an individual as a good risk. From row 5 in Table 1, the false neg-
ative rate is .40. About 60% of the time, the algorithm correctly classifies a
true positive as such.

Neither the false positive rate nor the false negative rate speak directly to
forecasting accuracy. When calculating the false positive and false negative
rate, the true outcome in the training data is given, and one learns the

8
If the cost ratio is not 1.0, the parallel to calibration is that the forecasted costs of

classification error is the same as the actual costs of classification error.
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chances that an algorithm will find it. False positive and false negative rates
primarily are used as metrics to evaluate algorithmic performance within
training data. They can provide measures of how well an algorithm performs,
which is important to computer scientists and statisticians.

More relevant for policy purposes are forecasting errors. Given that a
forecast has been actually made, what are the chances that it is correct?
The last two entries in the first column of Table 1 provide that information.
When an arrest for a violent crime is forecasted, it has a probability of .78
of being wrong. Although the high probability is disappointing, it results
substantially from the 5 to 1 cost ratio discussed earlier. Because on policy
grounds stakeholders determined that false positives were far less costly then
false negatives, a large number of false positives are folded into forecasts of
arrests. Empirically, there are about 4 false positives for every true positive.
A smaller cost ratio would have reduced the number of false positives, but a
smaller cost ratio would have been inconsistent with stakeholder preferences.

When no arrest for a violent crime is forecasted, the forecast is incorrect
with a probably of .05. This is the other e↵ect of the 5 to 1 cost ratio. Because
false negatives are so costly compared to false positives, the algorithm works
hard to avoid them. The relatively small number of false negatives leads
to very high forecasting accuracy when an arrest for a violent crime is not
forecasted.

Arrests for violent crimes are rare and di�cult to predict. The results
from the first column of Table 1 are roughly consistent with past machine
learning e↵orts to forecast crimes that are very troublesome but relatively
uncommon (Berk, 2012; Berk and Sorenson, 2016). In this application, con-
siderable success forecasting the absence of an arrest for a violent crime is to
be expected because the base rate for violent crime is low (i.e., .10). Ignoring
all of the predictors, one can be correct about 90% of the time by always fore-
casting no arrest. It is di�cult to do better. But if the algorithmic results
are used to forecast the absence of an arrest for violent crime, that forecast
would be correct about 95% of the time (row 7). Forecasting error is cut in
half. And given the large number of juveniles for whom such forecasts would
be made, several hundred young people in a given year would be correctly
treated as low risk who otherwise would be incorrectly treated as high risk.
The price paid is the relatively large number of violent crime false positives.

But what about fairness? Consider the two columns in Table 1 to the
right of the column just discussed. Output from the fitting algorithm was
subsetted for White juveniles and Black juveniles, and the same performance
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measures computed for each.
It is immediately apparent that the base rates are quite di↵erent. The

probability of an arrest for a violent crime is about .04 for Whites and about
.14 for Blacks. It is well known that except in highly stylized illustrations,
when base rates di↵er between groups, various kinds of inequality can cascade
through many performance measures, and a↵ect calibration as well (Klein-
berg et al., 2016; Chouldechova, 2016; Berk et al., 2017). To take a simple
example, an accurate forecasting procedure should predict that Black juve-
niles are more likely to be arrested for a violent crime because that is the
truth in the training data. Some would criticize the forecasts as lacking “sta-
tistical parity” or lacking “demographic parity.” But trying to fix a lack of
statistical parity can have undesirable side e↵ects (Dwork et al., 2012). For
example, one could fix the problem by detaining a su�ciently large, ran-
dom sample of lower risk, White juveniles. Clearly, this would be a policy
non-starter.

In Table 1, there are other fairness concerns as well.

1. The cost ratios di↵er. For Whites the cost ratio is a little over 7 to
1. For Blacks the cost ratio is a little under 5 to 1. For Whites, it is
more important than for Blacks to avoid assigning a low risk label to
juveniles who are actually high risk. Black juveniles may be getting
something like a beneficial algorithmic thumb on the scale. In the last
two rows, one can see that this can lead to greater forecasting accuracy
for Whites when a prediction of no violent crime arrest is made. (i.e.,
The number of false negatives is fewer.) At the same time, this can
lead to greater forecasting accuracy for Blacks when a prediction of
a violent crime arrest is made. (i.e., The number of false positives is
fewer.) How does one reconcile these di↵erent forecasting outcomes
with existing conceptions of fairness? One suggests algorithmic bias
against Blacks and one suggests algorithmic bias against Whites.

2. From row 3, one can see that calibration is achieved for neither group.
As noted earlier, this disparity results from Blacks having a larger base
rate to begin with. Should the Black-White disparity be seen as unfair
nevertheless, one solution might be to require stronger statistical evi-
dence for Blacks than whites to forecast an arrest for a violent crime.
One might try to justify this strategy by arguing that the higher base
rate for Blacks is itself a symptom of unfairness and needs to be dis-
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counted. However, one would be introducing di↵erential treatment for
Blacks and Whites, which some might claim is unfair.

3. From rows 4 and 5 in Table 1, one can see that both false positive rates
and false negative rates are higher for Blacks.9 By this metric, the gra-
dient boosting algorithm performs better for Whites, which some would
identify as a lack of equal opportunity (Hardt et al., 2016). However,
from a policy perspective, this is an an intermediate concern. No deci-
sions are made from the false positive or false negative rate because in
practice when they are computed, the outcome necessarily is known.
If the outcome is known, there is no need to forecast it. What mat-
ters more is algorithmic output that directly a↵ects decisions at intake
when the outcome is not known.

In summary, many fairness and accuracy concerns are raised by the results
reported in Table 1. It should be apparent that there are several kinds of
unfairness in tension with one another. Accuracy could be better as well.
What might be done?

4 Proposed Solutions

There are several kinds of unfairness and an absence of calibration that are
apparent from Table 1. To date, none of the proposed remedies provide
an across-the-board solution (Pedreschi et al., 2008; Kamiran and Calders,
2009; Kamishima et al., 2011; 2012; Hajianm and Domingo-Ferrer, 2015;
Feldman et al., 2015; Chouldechova, 2016; Joseph et al., 2016; Hardt et al.,
2016; Johnson et al., 2016; Berk et al., 2017; Calmon et al., 2017, Corbette-
Davies, 2017; Johndrow and Lum, 2017; Ridgeway and Berk, 2017). Rather,
researchers concentrate on one or two kinds of unfairness sometimes coupled
with calibration. Then, there are proofs demonstrating that except for some
highly unrealistic scenarios, one cannot simultaneously have calibration and
equal predictive accuracy. (Kleinberg et al., 2016; Chouldechova, 2016).

One can organize the technical literature using conceptual distinctions
from Romei and Ruggieri (2014). Some proposals favor “pre-processing”
methods in which adjustments are made to the data before a forecasting

9
The number of false positives and false negatives must be distinguished from the rate

of false positives and negatives.
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algorithm is trained. The intent is to remove sources of unfairness from data
before the data are used. Other proposals o↵er di↵erent kinds “in-processing”
in which the algorithm itself is altered to increase fairness in outputs. And
some favor “post-processing” in which forecasting results are manipulated so
that greater fairness is produced. But all, at least implicitly, trade one kind
of fairness for others in ways that can undermine forecasting accuracy. For
example, e↵orts to produce equality of outcome (e.g., the probability of arrest
is the same for black and whites) typically introduce inequality of treatment
(e.g., prior arrests for one of the protected classes are given less weight) and
dilute predictor information. One can also easily arrive at adjustments that
make everyone equally worse o↵. For example, forecasting accuracy is made
the same across all classes, but less accurate on the average for everyone.

It is impractical in this paper to demonstrate how even a small subset of
the proposed solutions are supposed work. Far too much exposition would
be required. But it is relatively easy to show empirically what the proposed
solutions hope to accomplish, key levers they will pull, and the limits of what
is likely to be possible.

4.1 Equalizing Cost Ratios

Suppose for our data, equal cost ratios are imposed for Black juveniles and
White juveniles. One might start by altering the cost ratios by protected
class because cost ratios can be determined by stakeholders before a fore-
casting algorithm is applied. Stakeholders have the option, if they wish, of
imposing identical cost ratios in service of greater fairness. Such cost ratios
can be important for algorithmic performance because they a↵ect the rela-
tive representation of false negatives and false positives in the results that,
in turn, a↵ect equality of treatment and equality of output.

Using a form of “in-processing” to this end, separate forecasting exercises
were undertaken for White Juveniles and Black Juveniles tuned to arrive at
the same target cost ratio of 5 to 1. That is, the algorithm was applied to
the White juveniles by themselves and to the Black juveniles by themselves.
The full dataset was used because there was no evidence earlier of overfitting
and more precise results would be produced. Table 2 shows the results.

One might argue with considerable justification that by applying the gra-
dient boosting algorithm separately to White and Black juveniles, one has
implemented in-processing introducing treatment inequality not present be-
fore. And in fact, using measures of variable importance, there were some
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Performance Measure White Subset Black Subset

1.Arrest Base Rate 0.04 0.14

2. Cost Ratio 4.83 to 1 4.67 to 1

3. Forecast An Arrest 0.10 0.29

4. False Positive Rate 0.08 0.22

5. False Negative Rate 0.38 0.30

6. Arrest Forecasting Error 0.75 0.66

7. No Arrest Forecasting Error 0.02 0.06

Table 2: Performance Measures From Gradient Boosting Results For A Vio-
lent Crime Arrest Separately for White and Black Juveniles With Equivalent
Cost Ratios By Race (White N = 15,804, Black N = 18,763)

di↵erences by race in which predictors were driving the forecasts.10 For exam-
ple, the four predictors in order making the greatest contribution to the fitted
values for Whites juveniles were (1) the number of prior misdemeanors, (2)
the age of an o↵ender’s earliest arrest, (3) the o↵ender’s age when released,
and (4) the number of weapons priors. For Black juveniles, the four pre-
dictors in order were (1) the number of weapons priors, (2) the number of
priors for drug o↵enses, (3) gender, and (4) the age when released. If the
predictors that matter most di↵er for Whites and Blacks, by this criterion
the algorithm is treating White juveniles and Black juveniles di↵erently.

Table 2 shows the new results in detail. The relative weight of false
negatives to false positives is now nearly the same for Whites and Blacks:
4.83 versus 4.67 respectively. One important kind of unfairness has been
e↵ectively eliminated, but by and large, the earlier kinds of inequality remain.
For example, there is still a large gap by race in the forecasted probability of
an arrest for a violent crime.

There are apparently no formal methods that favor any version of this
cost-ratio approach, perhaps because di↵erences in cost ratios have not been
salient fairness concerns. Cost ratios can matter a great deal to stakeholders
because, as noted earlier, di↵erent kinds of classification errors have di↵erent
real-world consequences unrelated to fairness, at least as usually defined.

10
Predictor importance is measured by the average over iterations of contribution to the

fit. Details can be found in Hastie et al., 2009: Section 15.3.2.
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4.2 Equalizing Base Rates

Di↵erent base rates for di↵erent protected classes have long been understood
as important sources of algorithmic unfairness. It follows that a potential
pre-processing approach would alter the violent arrest base rates. One can
do this by weighting the data. Because the base rate for Black juveniles is
about 3 times the base rate for White juveniles, arrests for Black juveniles
were discounted by a factor of 3 when algorithm was applied. If one assumes
that White juveniles are the “privileged” class, the Black base rate can be
weighted to closely approximate the White base rate. Blacks are given the
same re-arrest base rate as Whites. Table 3 shows some real improvements
in fairness.11

Performance Measure White Subset Black Subset

1. Arrest Base Rate 0.04 0.04

2. Cost Ratio 1 to 30.6 1 to 8.1

3. Forecast An Arrest 0.002 0.007

4. False Positive Rate 0.001 0.005

5. False Negative Rate 0.98 0.92

6. Arrest Forecasting Error 0.59 0.59

7. No Arrest Forecasting Error 0.04 0.04

Table 3: Training Data Performance Measures For Gradient Boosting Results
For A Violent Crime Arrest With Weighting (White N = 15,804, Black N =
18,763)

The forecasted probability of an arrest for a violent crime, the false neg-
ative rate, the false positive rate and both kinds of forecasting errors are
approximately the same for Black juveniles and and White juveniles. As
intended, the algorithmic output for Black juveniles now looks a lot like the
output for White juveniles. Even for algorithm skeptics, this might be a very
satisfactory outcome.12

11
Implementing weighting can be tricky because of the way an algorithm is designed.

For example, weighting may be implemented at the fitting stage, but not at the stage

when predictions from test data are undertaken. It can be a good strategy to alter the

base rates in the training data and test data before applying the algorithm rather than

counting on the algorithm getting it right. The procedure is then a mix of pre-processing

and in-processing.
12
The numbers are rounded. With more decimal places, small di↵erences appear.
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But there is strong evidence of inequality of treatment. The cost ratio for
Black juveniles is quite di↵erent from the cost ratio for White juveniles (1 to
8.1 versus 1 to 30.6 respectively). Relative to false positives, false negatives
are less costly for Blacks. This is one consequence of discounting by a factor
of 3 arrests of Black juveniles because it is the same is increasing by a factor
of 3 the relative number of black juveniles who are not arrested. With many
more arrest-free Black juveniles, there will be, other things equal, a larger
number of false positives.

In short, inequality of treatment is introduced so that one can better
approximate equality of outcome. Whether this is “fair” overall will depend
in part of why Black juveniles have a substantially higher base rate to begin
with. If the higher base rates are substantially and demonstrably caused
by bias in the criminal justice system, one might argue that compensating
for that bias is appropriate. By itself, however, this ignores the impact that
violent crime can have on victims. One might have to show that a higher base
rate for violent crimes committed by Black juveniles is primarily an artifact
of bias and that the recorded arrests, by and large, do not correspondent
to actual victims of violence. Were the arrests for violent crimes typically
linked to real crime victims, a far more complicated set of tradeo↵s must be
considered, perhaps especially because the most likely victims would also be
Black. Such concerns are very unusual in the formal work on algorithmic
methods. The algorithm proposed by Corbette-Davies and his colleagues
(2017) is one exception.

Nevertheless, trying to correct for the di↵erence in base rates can in many
situations be well worth trying, and there are several defensible ways one
can proceed. The weighting approach is easy to apply almost regardless of
the algorithm, but lacks much formal structure. There are more elegant
approaches. For example, Kamiran and Calders (2009) gradually change the
base rates for two protected classes while not changing the overall base rate
over both groups. The average base rate over groups, not the base rate of the
more “privileged” group, becomes the common base rate. Their algorithm
proceeds by changing the fewest possible actual class labels from success to
failure or from failure to success to arrive at equal base rates. This can be
a more satisfying way to alter the base rate, but it must confront many of
the same limitations. One has introduced treatment inequality. The group
with the lower base rate will tend to have its members “downgraded” to
failures. The group with the higher base rate will tend to have its members
“upgraded” to successes.
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One does not have to be limited to making the base rate race-neutral.
One can try to extract racial content from all predictors by capitalizing on
the usual covariance adjustments in regression as a form of pre-processing
(Berk, 2008). Each legitimate predictor is regressed in turn on a problematic
variable such as race. From each regression, the residuals are computed as
usual. Any linear dependence between each predictor and race is removed
because the residuals are by construction uncorrelated with the race variable.
One can then proceed using the residuals (but not race) as predictors in the
fitting algorithm. Unfortunately, associations with race can remain because
in the residualizing process, interaction e↵ects between the legitimate pre-
dictors and race are not taken into account. Those include not just the usual
two variable interactions, but higher order interactions as well. The solu-
tion would be to include all interaction e↵ects, some of which would be of
very high order, in the residualizing regressions, but that would increase the
number of predictors enormously and introduce disastrous multicollinearity.
Far more sophisticated versions of the residualizing strategy have been pro-
posed (Johnson et al., 2016; Johndrow and Lum, 2017), but both still depend
on getting the residualizing model right and even then, only some kinds of
unfairness are addressed.

4.3 Altering the Probability Thresholds

Post-processing also has potential. As noted earlier, many algorithmic meth-
ods output a risk score, often interpreted as a probability. Standard prac-
tice imposes a threshold of .50 on those probabilities. Individuals with risk
scores greater than .50 are assigned to the high risk class. Individuals with
risk scores equal to or less than .50 are assigned to the low risk class. The
value of .50 is chosen in part because it represents the value for which each
outcome is equally likely. But other thresholds can be used that can di↵er
by protected class.13

Using the full dataset, gradient boosting was employed as before. The
target cost ratio was still 5 to 1, and the empirical cost ratio was 5.6 to 1. The
only material change was that a di↵erent threshold strategy was imposed for
Black juveniles and White juveniles. Table 4 shows the algorithmic output
for the Black and White subsets of cases.

13
Risk scores do not have to be probabilities or even bounded at 0.0 and 1.0. But if

forecasted classes are desirable, a threshold of some kind is typically imposed.
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The White threshold was maintained at the conventional value of .50.
Those with fitted probabilities greater than .50 were projected to fail through
an arrest for a violent crime. Those with fitted probabilities equal to or less
than .50 were projected to not fail through an arrest for a violent crime. For
Blacks, the threshold value was set at .73 so that nearly the same fraction of
White juveniles and Black juveniles were forecasted to fail. Outcome equality
was achieved using unequal treatment. For both Black juveniles and White
juveniles, the fitted probability of an arrest for a violent crime is .11. But as
Table 4 shows, there is more to the story.

Performance Measure White Subset Black Subset

1. Arrest Base Rate 0.04 0.14

2. Cost Ratio 5.25 to 1 1 to 1.85

3. Forecast An Arrest 0.11 0.11

4. False Positive Rate 0.09 0.04

5. False Negative Rate 0.40 0.50

6. Arrest Forecasting Error 0.78 0.34

7. No Arrest Forecasting Error 0.02 0.08

Table 4: Training Data Performance Measures For Gradient Boosting Results
For A Violent Crime Arrest With Di↵erent Thresholds for White and Black
Juveniles (White N = 15,804, Black N = 18,763)

By altering the classification threshold, a dramatic change in the cost
ratio was introduced. For Whites, the false negatives are 5.25 times more
costly than false positives. For Blacks, false positives are 1.85 time more
costly than false negatives. This is another example of treatment inequality.
However, there is improved racial equality for the false positive and false
negative rates and for forecasting error associated with an absence of an
arrest for a violent crime. The forecasting error rate for a violent crime
arrest still shows a substantial disparity.

There are many approaches to post-processing that adopt a similar strat-
egy, but in a far more elegant manner. For example, Corbett-Davies and his
colleagues (2017) build a constrained optimization approach that uses di↵er-
ent race-specific risk thresholds to trade public safety against di↵erent kinds
of fairness. The result is important insights about the potential magnitude
of di↵erent in-processing tradeo↵s, but as the authors note, everything de-
pends on how well their utility maximization model captures actual risk in
real settings. In addition, their e↵ort is largely about making the accuracy-
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fairness tradeo↵s more apparent, not figuring out ways to be accurate and
fair at the same time. Alternatively, rather than simply shifting the classifi-
cation threshold, Hardt and his colleagues (2016) choose random cases that
have their assigned class reassigned. This approach is placed in an optimiza-
tion framework so that not just those cases near the threshold of .50 have
their forecasted outcome altered while the false positive rates for the di↵erent
protected classes are made the same (i.e., an equal opportunity constraint).

4.4 Regularization Methods

Fairness regularization is a method in which an algorithm’s code is hand-
tailored to adjust for far more subtle unfairness concerns. More is involved
than minor modifications to existing software. The basic idea is to intro-
duce unfairness costs into the fitting process that the algorithm then tries
to avoid. Drawing heavily on earlier work (Kamashima et al., 2011; Berk
et al., 2017c), Ridgeway and Berk (2017) derive an in-process regularized
form of gradient boosting with two regularization terms. One is the usual
function that penalizes undesirable complexity in the fitted values. There
are mathematical incentives preventing the algorithm from capitalizing on
unimportant patterns in the data. The other is a function that penalizes a
particular kind of unfairness. There are mathematical incentives for results
to be more fair.

Suppose as before that there are two protected classes, say, Whites and
Blacks. Each Black individual is compared one by one to all White individ-
uals. When the actual outcome for the Black case and the White case is the
same (e.g., both were arrested) but the fitted scores used for classification are
not (e.g., the predicted probability of an arrest di↵ers), there is an instance
of unfairness. The greater the disparity in the fitted scores, the greater the
unfairness. The algorithm does not care about the direction of the unfair-
ness. Any unfairness may favor either the Black or White individual – the
algorithm is formally race-neutral.

The same steps are then undertaken in which each White individual is
compared one by one to all Black individuals. Again, the algorithm is for-
mally race-neutral. The two sources of unfairness are then combined to get
an overall unfairness measure. With tuning, the impact of overall unfair-
ness can be varied. As one increases the algorithmic incentives for fairness,
accuracy declines so that one precisely can document the fairness-accuracy
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tradeo↵s.14

The fairness regularizer can be seen as a form of weighting. With each
iteration, cases subject to greater amounts of unfairness receive greater em-
phasis by the algorithm. The algorithm works harder to fit the cases with
more unfairness, which can reduce the unfairness. There is not one set of
weights but many because the weights are revised with each iteration of the
algorithm. The fairness weighting implemented earlier is done only once.

5 Conclusions and Recommendations

Summarizing the many details, there are five conclusions. First, it can be
useful to think of the di↵erent kinds of unfairness as special cases of out-
come inequality or treatment inequality. These correspond to conventional
categories in jurisprudence. But it remains to be seen whether the two kinds
of inequality are su�ciently refined to be useful in an algorithmic context.
For example, for di↵erent protected groups, one can in service of fair out-
comes introduce di↵erent weights, di↵erent thresholds, di↵erent cost ratios,
or entirely di↵erent algorithmic results. These are all forms of treatment in-
equality. Are there no important legal distinctions between them? Moreover,
there needs to be greater clarity about what an outcome is. There is the in-
formation produced by an algorithm, there are decisions that might be made
with that information, and there are actions taken as a consequence of those
decisions. An algorithm can only be held accountable for the information it
provides. The responsibilities for what is done with that information lie else-
where. In what sense are algorithms ever responsible for unfair outcomes? If
there are to be liabilities, who has them?

Second, recall that calibration requires that the predicted probability for
a given outcome is the same as the actual probability of that outcome. Al-
though calibration is highly desirable in principle, it is unlikely to be obtained
in practice, except in extremely unusual or stylized settings. One has to ques-
tion, therefore, whether calibration is worth legal analysis. But in the absence
of calibration, one might still consider the legal relevance of statistical parity
– whether the projected probability of failure (or success) is the same for all
protected classes. Perhaps more important is whether the algorithmic fore-

14
The authors recognize that there are many defensible ways to define a fairness reg-

ularizer and that the algorithm can be (and perhaps should be) rewritten so that other

manifestations of bias can be addressed.

20



casts are equally accurate across protected classes. In short, concerns about
algorithmic accuracy can come in at least three di↵erent forms.

Third, past e↵orts to increase fairness typically ignore a critical issue:
what exactly is the target for equality? This concern was raised earlier when
adjustments were made for protected class base rates. What base rate should
be the target? The White base rate? The Black base rate? Something be-
tween? The same issues arose when di↵erent failure thresholds were chosen
for di↵erent protected classes. Recall that the goal was to have equal pre-
dicted probabilities of an arrest for a violent crime. But what predicted
probability should be the target? In both cases, the target was determined
by the more privileged class (i.e., Whites). There is no mathematical or
statistical justification for this choice. The choice was implicitly justified by
a view that Whites are privileged, that such privilege is undesirable, and it
is the job of the algorithm to fix it by proceeding as if Blacks were equally
privileged. One could certainly challenge these views in many ways. The
larger point is that considerations of fairness must provide detail on what
the fairness target should be and why.

Fourth, discussions of fairness in criminal justice settings typically ignore
fairness for victims. This seems myopic in part because perpetrators tend to
victimize people like themselves. The leading cause of death among young
African-American males is homicide. The most likely perpetrators are other
young African-American males. When one adjusts algorithms to make them
more fair for Black perpetrators, one risks increasing unfairness for Black
crime victims. The importance of their victimization can be discounted and
even ignored.

Finally, there are complicated tradeo↵s between di↵erent kinds of fair-
ness and between di↵erent kinds of fairness and di↵erent kinds of accuracy.
You can’t have it all. Computer scientists and statisticians will over time
provide far greater clarity about these tradeo↵s, but they cannot be (and
should not be) asked to actually make those tradeo↵s. The tradeo↵s must
be made by stakeholders through legal and political processes. This will be
very challenging.

With all of the unresolved issues, there is currently no preferred way to
make the tradeo↵s. Stakeholders in each setting need to determine how best
to proceed, and there should be room for a variety of di↵erent arrangements.
At the moment, among the greatest obstacles are negotiations that are poorly
informed. Computer scientists and statisticians must provide information on
the choices available in an accessible form, and stakeholders must be prepared
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to listen and learn. Another important obstacle is stakeholders who refuse to
acknowledge that compromises are required. Sometimes strongly held values
do not play well with facts. A substantial stalemate, or even misguided
policies, may be necessary prerequisites for meaningful compromise.
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