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Abstract

It is well known that models used in conventional regression analysis are commonly
misspecified. A standard response is little more than a shrug. Data analysts invoke
Box’s maxim that all models are wrong and then proceed as if the results are useful
nevertheless. In this paper, we provide an alternative. Regression models are treated
explicitly as approximations of a true response surface that can have a number of desir-
able statistical properties, including estimates that are asymptotically unbiased. Valid
statistical inference follows. We generalize the formulation to include regression func-
tionals, which broadens substantially the range of potential applications. An empirical
application is provided to illustrate the paper’s key concepts.

1 Introduction

It is old news that models are approximations and that regression analyses of real data
commonly employ models that are misspecified in various ways. Conventional approaches
are laden with assumptions that are questionable, many of which are effectively untestable
(Box, 1976, Leamer, 1878; Rubin, 1986; Cox, 1995; Berk, 2003; Freedman, 2004; 2009).
This note discusses some implications of an “assumption lean” reinterpretation of regres-
sion. In this reinterpretation, one requires only that the observations are i.i.d., realized
at random according to a joint probability distribution of the regressor and response vari-
ables. If no model assumptions are made, then the parameters of fitted models need to be
interpreted as statistical functionals, here called “regression functionals.”

For ease and clarity of exposition we begin with linear regression. Later we turn to
other types of regression and show how the lessons from linear regression carry forward to
the generalized linear model and even more broadly. We draw heavily on two papers by
Buja et al. (2016a;b), a portion of which draws on early insights of Halbert White (1980a).
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2 The Parent Joint Probability Distribution

For observational data, suppose there is a set of quantitative random variables that have
a joint distribution P , also called the “population,” that characterizes regressor variables
X1, . . . , Xp and a response variable Y . The distinction between regressors and the response
is determined by the data analyst based on subject matter interest. These designations do
not imply any causal mechanisms and or any particular generative models for P . Unlike
in linear models theory, the regressor variables are not interpreted as fixed: they are as
random as the response and will treated as such.

We collect the regressor variables in a (p+1)×1 column random vector ~X = (1, X1 . . . , Xp)
′

with a leading 1 to accommodate an intercept in linear models. We write P = P
Y, ~X

for

the joint probability distribution, P
Y | ~X for the conditional distribution of Y given ~X, and

P~X
for the marginal distribution of ~X. The only assumption made is that the data are re-

alized i.i.d. from P . The separation of the random variables into regressors and a response
implies that there is interest in P

Y | ~X . Hence, some form of regression analysis is applied.

Yet, because the regressors are random variables, their marginal distribution P~X
cannot

be ignored.

3 Estimation Targets

As a feature of P or, more precisely, of P
Y | ~X , there is a “true response surface” denoted by

µ( ~X). Most often, µ( ~X) is the conditional expectation of Y given ~X, µ( ~X) = E[Y | ~X],
but there are other possibilities, depending on the context. For example, µ( ~X) might be
chosen to be the conditional median or some other conditional quantile of Y given ~X. The
true response surface is a common estimation target for conventional regression in which
a data analyst assumes a specific parametric form. We will not proceed in this manner
and will not make assumptions about what form P

Y | ~X actually takes. Yet, we will make

use of standard ordinary least squares (OLS) fitting of linear equations. This approach
reflects data analytic situations in which either deviations from linearity in µ( ~X) may
be difficult to detect with diagnostics, or in which the fitted linear formula is known to
be a deficient approximation to µ( ~X), and yet, OLS is employed because of underlying
substantive theories, measurement requirements, or considerations of interpretability.

Fitting a linear function l( ~X) = β′ ~X to Y with OLS can be achieved mathematically
at the population P without assuming that the response surface µ( ~X) is linear in ~X:

β(P ) = argmin
β∈IRp+1

E[(Y − β′ ~X)2]. (1)

The vector β = β(P ) is the “population OLS solution” and contains the “population
coefficients.” Notationally, when we write β, it is understood to be β(P ). Similar to finite

2



datasets, the OLS solution for the population can be obtained by solving a population
version of the normal equations, resulting in

β(P ) = E[ ~X ~X
′
]−1E[ ~XY ]. (2)

Thus, one obtains the best linear approximation in the OLS sense to Y as well as to µ( ~X).
As such, it should be useful without (unrealistically) assuming that µ( ~X) is identical to
β′ ~X.

We have worked so far with a distribution/population P , not data. We have, therefor,
defined a target of estimation: β(P ) obtained from (1) and (2) is the estimand of empirical
OLS estimates β̂ obtained from data. This estimand is well-defined as long as the joint
distribution P has second moments and the regressor distribution P~X

is not perfectly

collinear. That is, the second moment matrix E[ ~X ~X
′
] is full rank. No other assumptions

are needed. In particular, there are no assumptions of linearity of µ( ~X), homoskedasticity,
or Gaussianity. This constitutes the “assumption lean” or “model robust” framework.

A foundational question is why one should settle for the best linear approximation to
the truth. Indeed, those who insist that models must always be “correctly specified” will be
unreceptive. They may insist that models should be revised until diagnostics and goodness
of fit tests no longer detect deficiencies. One may then legitimately proceed as if the model
is correct.

Such thinking warrants careful scrutiny. Data analysis with a given, fixed sample size
requires decisions about how to balance the desire for good models against the costs of
data dredging. “Improving” models by searching regressors, trying out transformations of
all variables, inventing new regressors from existing ones, applying algorithms and inter-
active experiments, and undertaking assessments with diagnostic tests and plots can each
invalidate subsequent statistical inference. The result often is models that not only fit the
data well, but fit them too well (Hong et al. 2017).

Research is underway to provide valid post-selection inference (e.g., Berk et al. 2013,
Lee et al. 2016), which is an important special case. But the proposed procedures address
solely regressor selection and typically make strong assumptions. With these significant
caveats, asymptotically valid post-selection inference under misspecification has substantial
promise (Bachoc et al. 2016, Kuchibhotla et al. 2018), but there is not yet much to help
the data analyst.

Beyond the costs of data dredging, there can be substantive reasons for curtailing
“model improvement.” Some variables may express phenomena in “natural” or “conven-
tional” units that should not be transformed even if model fit is improved. A substantive
theory may require a particular model that does not fit the data well. Identifying important
variables may be the primary concern, making quality of the fit less important. Predictors
prescribed by subject-matter theory or past research may be unavailable so that the model
specified is the best that can be done. In short, one must consider ways in which valid
statistical inference can be undertaken with models acknowledged to be approximations.
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Figure 1: A Population Decomposition of Y |X Using the Best Linear Approximation

Note that we are not making an argument for discarding model diagnostics. It is
always important to learn what one can from the data, including model deficiencies that
properly circumscribe conclusions being drawn. But there can be serious risks trying
impose remedies that really are not.

We also are not simply restating Box’s maxim that models are always “wrong” in some
ways but can useful despite their deficiencies. Acknowledging models as approximations
is one thing. Understanding the consequences is another. What follows, therefore, is a
discussion of some of these consequences and an argument in favor of assumption lean
inference employing model robust standard errors, such as those obtained from sandwich
estimators or the x-y bootstrap.

4 A Population Decomposition of the Conditional Distribu-
tion of Y

A first step in understanding the statistical properties of the best linear approximation is
to consider carefully the potential disparities in the population between µ( ~X) and β′ ~X.
Figure 1 provides a visual representation. There is for the moment a response variable Y
and a single regressor X.

The curved line shows the true response surface µ(x). The straight line shows the best
linear approximation β0 + β1x. Both are features of the joint probability distribution, not
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a realized dataset.
The figure shows a regressor value x∗ drawn from P~X

and a response value y drawn from
PY |X=x∗ . The disparity between y and the fitted value from the best linear approximation
is denoted as δ = y − (β0 + β1x

∗) and will be called the “population residual.” The value
of δ at x∗ can be decomposed into two components:

• The first component results from the disparity between the true response surface,
µ(x∗), and the approximation β0 + β1x

∗. We denote this disparity by η = η(x∗) and
call it “the nonlinearity.” Because β0 + β1x

∗ is an approximation, disparities should
be expected. They are the result of mean function misspecification. As a function of
the random variable X, the nonlinearity η(X) is a random variable as well.

• The second component of δ at x∗, denoted by ε, is random variation around the
true conditional mean µ(x∗). We prefer for such variation the term “noise” over
“error.” Sometimes it is called “irreducible variation” because it exists even if the
true response surface is known.

The components defined here and shown in Figure 1 generalize to regression with arbitrary
numbers of regressors, in which case we write δ = Y − β′ ~X, η = µ( ~X) − β′ ~X and
ε = Y − µ( ~X). These random variables have properties with important implications.
Foremost, the population residual, the nonlinearity and the noise are all “population-
orthogonal” to the regressors:

E(Xj δ) = E(Xj η( ~X)) = E(Xj ε) = 0, (3)

where following the convention introduced in Section 2, the index j = 0 indicates the inter-
cept, X0 = 1, and j = 1, . . . , p indicate the actual regressors Xj . Importantly, properties
(3) are not assumptions. They are consequences of the way in which these terms are de-
fined. Their properties derive directly from the decomposition described above and the fact
that β′ ~X is the population OLS approximation to Y and also to µ( ~X). This much holds
in an assumption lean framework without making any modeling assumptions whatsoever.

Because we assume an intercept to be part of the regressors (X0 = 1), the facts (3)
imply that all three terms are marginally population centered:

E[δ] = E[η( ~X)] = E[ε] = 0. (4)

However, it is not true thatE[δ| ~X] = 0, and δ is not independent of ~X as would be the case
assuming a conventional error term in a linear model. We have instead E[δ| ~X] = η( ~X),
which, though marginally centered, is a function of ~X and hence not independent of the
regressors (unless it vanishes). Similarly, although the noise ε is marginally centered and
uncorrelated with the regressors, it is generally dependent on the regressors, for example,
in the form of heteroskedasticity.

Concluding this section, we emphasize that the regressor variables have been treated
as random and not as fixed. The assumption lean framework has allowed a constructive
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decomposition that mimics some of the features of a linear model but replaces the usual
assumptions made about “error terms” with orthogonality properties associated with the
random regressors. These properties are satisfied by the population residuals, the non-
linearity and the noise alike. They are not assumptions. They are consequences of the
decomposition.

5 Random Regressors InteractingWith a Nonlinear Response
Surface

Because in reality regressors are most often random variables that are as random as the
response, it is a peculiarity of common statistical practice that such regressors are treated
as fixed (Searle, 1970: Chapter 3). In probabilistic terms, this means that one conditions
on the observed regressors. Under the frequentist paradigm, alternative datasets generated
from the same model leave regressor values unchanged. Only the response values change.
Consequently, regression models have nothing to say about the regressor distribution; they
only model the conditional distribution of the response given the regressors, and there is no
role for the regressor marginal distributions. This alone might be seen by some as sufficient
to justify conditioning on the regressors. There exists, however, a more formal justification,
drawing on principles of mathematical statistics: in any regression model, regressors are
ancillary for the parameters of the model, and hence, can be conditioned on and treated as
fixed. This principle, however, has no validity here because it applies only when the model
is correct, which is precisely the assumption discarded by an assumption lean framework.
Thus, we are not constrained by statistical principles that apply only in a model trusting
framework.

Ignoring the randomness of the regressors and their marginal distribution is perilous
under misspecification. Figure 2 shows why. The left and right side pictures both compare
the effects of different regressor distributions for a single regressor variable X in two situ-
ations: misspecification and correct specification, respectively. The left plot shows a case
of misspecification in which the true mean function µ(X) is nonlinear and yet, a linear
function is fitted. The best linear approximation to the nonlinear mean function depends
on the regressor distribution P~X

. Therefore, the “true parameters” β — the slope and
intercept of the best fitting line at the population — will also depend on the regressor
distribution. Specifically, one can see that for the left marginal distribution the intercept
is larger and the slope is smaller than for the right marginal distribution. This implies
that under misspecification the regressor distribution P~X

, thought of as a “non-parametric
nuisance parameter,” is no longer ancillary.

The right side plot of Figure 2 shows a case of correct specification: The true mean
function µ(X) (gray line) is linear. Consequently, the best linear approximation is trivially
the same (black line) for both regressor distributions. In this case, the population marginal
distribution of X does not matter for the best linear approximation. There is one value for
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Figure 2: Dependence of the Population Best Linear Approximation on the Marginal Dis-
tribution of the Regressors

β no matter where the mass of X falls. This makes the regressor distribution P~X
ancillary

for the parameters of the best linear fit.
The lessons from Figure 2 generalize to multiple linear regression with multivariate ~X,

but the effects illustrated by the figure are magnified. Although one may argue that with
a single regressor it should be easy to diagnose the misspecification, the challenges escalate
for progressively larger numbers of regressors, and become nearly impossible in “modern”
settings where the number of regressors exceeds the sample size, and data analysts tend to
gamble on sparsity.

Practical implications and questions arise immediately. First, it is the combination of
a misspecified working model and random regressors that produces the complications —
it matters where the regressors fall. Second, one may wonder about the meaning of slopes
when the model is not assumed to be correct. Third, what is the use of predicted values
ŷ = ~x′β? Fourth, what form should statistical inference take when there is no reliance on
the usual assumptions? Specifically, how are standard errors and associated p-values and
confidence intervals affected by model misspecification? We will discuss possible answers
to these questions in the remaining sections.

6 Conditional Mean Functions versus Regressor Distribu-
tions

The difficulties illustrated by Figure 2 suggests possibilities that may occur in various app-
plications, ranging from modeling of grouped data to meta-analysis. Consider the following
hypothetical scenarios that should serve as cautions when interpreting models that are ap-
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proximations. In Section 8 we will provide ways to interpret properly misspecified fitted
linear functions.

Imagine a study of employed females and males in a certain industry, with income as
response and a scale measuring education level as regressor. Consider next the possibility
that there is one conditional mean function for income irrespective of gender, but the mean
function may be nonlinear in the education scale, as illustrated by the left side picture in
Figure 2. A data analyst may fit a linear model, perhaps because of convention, a high level
of noise obscuring the nonlinearity, or a lack of graphical data exploration. The analyst
may then find that different slopes are required for males and females and may respond by
including in the regression an interaction term between gender and education. If, however,
the truth is as stipulated, the usual interpretation of interaction effects would be misleading.
The driver of the gender difference is not in how income responds to education, but the
education scale distribution by gender. Put in different language, one may say that the
real story is in the consequences of an association between gender and education.

Imagine now meta-analysis of randomized clinical trials (RCTs). RCTs often produce
different apparent treatment effects for the same intervention, sometimes called “parameter
heterogeneity.” Suppose the intervention is a subsidy for higher education, and the response
is income at some defined end point. In two different locales, the average education levels
may differ. Consequently, in each setting the intervention works off different baselines.
There can be an appearance of different treatment effects even though the nonlinear mean
returns to education may be the same in the both locales. The issue is, once again, that
the difference in effects on returns to education may not derive from different conditional
mean functions but from differences between regressor distributions.

Apparent parameter heterogeneity also can materialize in the choice of covariates. The
coefficient β1 of the regressor X1 is not to be interpreted in isolation. β1 depends on what
other regressors are included. In the simplest case, a regression on X1 alone, differs a
regression on X1 and X2, Fitting a best approximation using X1 alone produces a value
of β1 that would be the same in a regression on X1 and X2 if the two regressors were
strictly uncorrelated. In observational data, X1 and X2 are likely to be partially collinear
or “confounded” to various degrees. It matters for β1 whether X2 is included in the
regression. In the extreme, the coefficients β1 obtained from the two regressions may
have different signs, suggesting an instance of Simpson’s paradox (see Berk et al. 2013,
Section 2.1, for a more detailed discussion). For our discussion, exclusion versus inclusion
of X2 can be interpreted as a difference in regressor distributions, namely, that of the
marginal distribution of X1 compared to the bivariate distribution of (X1, X2).

The prospect of more than one regressor can introduce further complications in prac-
tice. If some of the candidate regressors are unrelated to the response, variable selection
procedures are sometimes employed. A common and heroic assumption is that the mean
function is correctly specified save for some unnecessary regressors, and that such regressors
can be found and discarded. Perhaps the most fundamental difficulty is how to formulate
a proper estimand for different models defined by different subsets of the regressors when
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none of the models is correctly specified. For us, that the target of estimation is the best
approximation at the population for the regressors selected. But within our approach,
any approximation can be best by the least squares criterion, and the slopes of regressors
included in more than one approximation can vary dramatically. One must also properly
handle the post selection inference.

7 Estimation and Standard Errors

With i.i.d. multivariate data (Yi, ~Xi) (i = 1, . . . , n) from P on hand, one can apply OLS and
obtain the plug-in estimate β̂ = β(P̂n) derived from (1), where P̂n denotes the empirical
distribution of the dataset. By multivariate central limit theorems, the regression estimates
for the slopes of the best linear approximation in the OLS sense are asymptotically unbiased
and normally distributed. These estimates are also asymptotically efficient in the sense of
semi-parametric theory (e.g, Levit 1976, p. 725, ex. 5; Tsiatis, 2006, p. 8 and ch. 4).

7.1 Sandwich Standard Error Estimates

The asymptotic variances of the OLS regression estimates in the assumption lean i.i.d. sam-
pling framework deviate from those of linear models theory which assumes linearity and
homoskedasticity. The appropriate asymptotic variance is instead of a “sandwich” form
(White, 1980a):

AV [β,P ] = E[ ~X ~X
′
]−1 E[δ2 ~X ~X

′
] E[ ~X ~X

′
]−1. (5)

A plug-in estimator is obtained as follows:

ÂV = AV [β̂, P̂n] =

(
1

n

∑
i

~X
′
i
~Xi

)−1 (
1

n

∑
i

r2i
~X
′
i
~Xi

) (
1

n

∑
i

~X
′
i
~Xi

)−1
, (6)

where ri = Yi − ~X
′
iβ̂ are the sample residuals and P̂n is the empirical distribution of the

data (Yi, ~Xi) (i = 1, ..., n). Equation (6) is the simplest form of sandwich estimator of
asymptotic variance. More refined forms exist but are outside the scope of this article.
Standard error estimates for OLS regression coefficient estimates β̂j are obtained from (6)
using the asymptotic variance estimate in the j’th diagonal element:

SEj =

(
1

n
ÂV j,j

)1/2

.

A connection with linear models theory is as follows. If the truth is linear and ho-
moscedastic, hence the working model is correctly specified to first and second order, then
the sandwich formula (5) collapses to the conventional formula for asymptotic variance due

to E[δ2 ~X ~X
′
] = σ2E[ ~X ~X

′
], which in turn follows from E[δ2| ~X] = E[ε2| ~X] = σ2. The

result is AV [β,P ] = σ2E[ ~X ~X
′
]−1. This is the “assumption laden” form of asymptotic

variance.
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7.2 Bootstrap Standard Error Estimates

An alternative to standard error estimates based on the sandwich formula is obtained
from the nonparametric pairwise or x-y bootstrap which resamples tuples (Yi, ~Xi). It is
transparently assumption lean in that it relies for asymptotic correctness essentially only
on iid sampling of the tuples (Yi, ~Xi) and some technical moment conditions. The x-y
bootstrap therefore applies to all manners of regressions, including GLMs.

In stark contrast, the residual bootstrap is inappropriate. It necessarily assumes first
order correctness, µ(~x) = β′~x, as well as homoskedastic population residuals δ. The only
step towards assumption leanness is a relaxation of Gaussianity of the error distribution.
Furthermore, it does not apply to other forms of regression such as logistic regression. The
residual bootstrap seems to be preferred by those who insist that one should condition
on the regressors because they are ancillary. But as argued in Section 5, the ancillarity
argument assumes correct specification of the linear regression model with independent
errors, controverting the idea that models are approximations rather than truths.

Sandwich and bootstrap estimators of standard error are identical in the asymptotic
limit, and on finite data they tend to be close. Based on either, one may perform conven-
tional statistical tests and form confidence intervals. Although asymptotics are a justifica-
tion for either, one of the advantages of the bootstrap is that it lends itself to a diagnostic
to assessment of whether asymptotic normality is a reasonable assumption for the anal-
ysis being undertaken. One simply creates normal quantile plots of bootstrap estimates
obtained in the requisite simulations. Finally, bootstrap confidence intervals have be ad-
dressed in extensive research showing that there are variants demonstably higher order
correct. See, for example, Hall (1992), Efron and Tibshirani (1994), Davison and Hinkley
(1997). An elaborate double-bootstrap procedure for regression is described in McCarthy
et al. (2017).

8 Interpretations

8.1 Slopes from Best Approximations

When the estimation target is the best linear approximation, one can capitalize on desir-
able model-robust properties not available from assumption laden, linear models theory.
The price is that subject-matter interpretations address features of the best linear approx-
imation, not that of a “generative truth” — which, as we have emphasized, is often an
unrealistic notion.1

The most important interpretive issues are associated with the regression coefficients
of the best linear approximation. The problem is that the standard interpretation of a
regression coefficient is not strictly applicable anymore: It no longer holds that

1Even the minimal assumption of i.i.d. sampling adopted here is often unrealistic.
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βj is the average difference in Y for a unit difference in Xj at constant levels of all
other regressors Xk.

This statement uses the classical “ceteris paribus” (all things being equal) clause, which
only holds when the response function is indeed linear. One gets closer to a generalizable
interpretation if one modifies two details of this formulation as follows:

βj is the average ratio of differences in Y over differences in Xj, linearly adjusted
for all other regressors Xk.

To give this interpretation precise meaning, we focus on the population target and
consider for the moment a single regressor only. The slope of the simple regression through
the origin of Y on X is then β = E[Y X ]/E[X2 ]. It is a matter of elementary algebra to
show that β also equals the following suggestive expression:

β = E[w(X−X ′) Y −Y
′

X−X ′ ] where w(X−X ′) =
(X−X ′)2

E[ (X −X ′)2 ]
. (7)

Here (X,Y ) and (X ′, Y ′) are two points drawn independently from the joint (X,Y ) distri-
bution, hence (Y−Y ′)/(X−X ′) is the slope of the line through this pair of points. Formula
(7) says that these pairwise slopes average out to the slope β of the OLS approximation
when weighted proportionately to squared horizontal distances (X−X ′)2. These weights
lend more influence to point pairs that are far from each other on the X-axis and are,
therefore, more informative for the slope. Thus, β is indeed a weighted average of pairwise
slopes.

To extend the interpretation to more than one regressor, we only need to observe that
the multiple regression coefficient βj is the simple regression coefficient through the origin
with regard to Xj , linearly adjusted for all other regressors. The same interpretation is

available for estimates β̂j through its plug-in. In either case, formula (7) provides an
interpretation of slopes as distance-weighted averages of pairwise slopes obtained from
linearly adjusted regressors (see Buja et al. 2016a for more details).

8.2 Predicted Values ŷ from Best Approximations

Also of interest are the predicted values at specific locations ~x in regressor space, estimated

as ŷ~x = β̂
′
~x. In linear models theory, for which the model is assumed correct, there is

no bias if it is the true response surface that is estimated by predicted values. That is,
E[ŷ~x] = β′~x = µ(~x) because E[β̂] = β, where E[. . .] refers only to the randomness of the
response values yi with the regressor vectors ~Xi treated as fixed.

When the model is mean-misspecified such that µ(~x) 6= β′~x, then ŷ~x is an estimate of
the best linear approximation β′~x, not µ(~x). Hence, there exists bias µ(~x) − β′~x = η(~x)
that does not disappear with increasing sample size n. Insisting on consistent prediction
with linear equations at a specific location ~x in regressor space is, therefore, impossible.
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In order to give meaning to predicted values ŷ~x under misspecification, it is necessary
to focus on a population of future observations (Yf , ~Xf ) and to assume that it follows

the same joint distribution P
Y, ~X

as the earlier training data (Yi, ~Xi). In particular, the

future regressors are not fixed but random according to ~Xf ∼ P~X
. If this is a reasonable

assumption, then ŷ ~Xf
is indeed the best linear prediction of µ( ~Xf ) and Yf for this future

population under squared error loss. Averaged over future regressor vectors, there is no
systematic bias because E[η( ~Xf )] = 0 according to (4) of Section 4.2 Asymptotically
correct prediction intervals for Yf do exist and, in fact, the usual intervals of the form

PIn(~x;K) :=

ŷ~x ±K · σ̂ ·
1 + ~x′

( ∑
i=1...n

~X
′
i
~Xi

)−1
~x

 (8)

can be used. However, the usual multiplier K is based on linear models theory with
fixed regressors. It is not robust to misspecification. There exists a simple alternative for
choosing K that has asymptotically correct predictive coverage under misspecification. It
can be obtained by calibrating the multiplier Kn empirically on the training sample such
that the desired fraction 1 − α of observations (Yi, ~Xi) falls in their respective intervals.
One estimates K̂n by satisfying an approximate equality as follows, rounded to ±1/n:

1

n
·#
{
i ∈ {1, . . . , n} : Yi ∈ PI( ~Xi; K̂n)

}
≈ 1− α.

Under technical conditions, such multipliers will produce asymptotically correct prediction
coverage:

P
[
Yf ∈ PI( ~Xf ;Kn)

]
→ 1− α as n→∞,

where P [. . .] accounts for randomness in the training data as well as the future data. (For
more honest prediction, one might consider a cross-validated version of calibration based
on repeatedly leaving out random portions of the data in fitting and estimating K̂n from
those portions.)

This method of calibration is certainly not unique for the prediction intervals of the form
shown in (8). Its essential feature is that the intervals form a one-parameter nested family:
PIn(~x;K) ⊂ PIn(~x;K ′) for K ≤ K ′ ∈ IR. Thus, calibration for prediction can be applied
to many other forms of nested intervals, but those of (8) are conventional and optimal
under correct specification and yet, made asymptotically accurate under misspecification
by the simple device of empirical calibration.

2When regressors are treated as random, there exists a small estimation bias. E[β̂] 6= β in general

because E[( 1
n

∑ ~X
′
i
~Xi)
−1( 1

n

∑ ~XiYi)] 6= E[ ~X
′ ~X]−1E[ ~XY ], causing E[ŷ~x] 6= β′~x for fixed ~x. However,

this bias is of small order in n and shrinks rapidly with increasing n.
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8.3 Causality and Best Approximation

Misspecification creates important challenges for causal inference. Consider first a ran-
domized experiment with potential outcomes Y1, Y0 for a binary treatment/intervention
C ∈ {0, 1}. Because of randomization, the potential outcomes are independent of the
intervention: (Y1, Y0) ⊥⊥ C. Unbiased estimates of the Average Treatment Effect (ATE)
follow. Pre-treatment covariates ~X can be used to increase precision (reduce standard er-
rors) only, similar to control variates in Monte Carlo (MC) experiments. It has been known
for some time that the model including the treatment C and the pre-treatment covariates
~X does not need to be correctly specified to provide correct estimation of the ATE and
(possibly) an asymptotic reduction of standard errors. That is, the model Y ∼ τC + β′ ~X
may be arbitrarily misspecified, and yet the ATE agrees with the treatment coefficient τ .
(To yield a benefit, however, the covariates ~X must produce a useful increase in R2 or
some other appropriate measure of fit, similar to control variates in MC experiments.)

Now consider observational studies. There can be one or more variables that are thought
of as causal and which can at least in principle be manipulated independently of the other
covariates. If there is just one causal binary variable C, we are returned to a model of the
form Y ∼ τC + β′ ~X, where it would be desirable for τ to be interpretable as an average
treatment effect (Angrist and Pischke, 2009, Section 3.2). These are always very strong
claims that often call for special scrutiny. It is widely known that causal inference properly
can justified by assuming one of two sufficient conditions, known as “double robustness”
(see, e.g, Bang and Robins 2005, Rotnitzki et al. 2012): (1) Either the mean function for Y
is correctly specified, which in practice means that there is no “omitted variables” problem
for the response and that the functional form of the conditional mean function for Y is
correct; or (2) the conditional probability of treatment (called the propensity score) can
be correctly modeled, which in practice means that there is no omitted variables problem
for treatment probabilities and that the (usually logistic) functional form of the treatment
probabilities is correct. In either case, omitted variable concerns are substantively charac-
terized and not be satisfactorily addressed by formal statistical methods (Freedman, 2004).
There are certainly diagnostic proposals based on proxies for potentially missing variables
or based on instrumental variables, but the assumptions required a hardly lean. (see,
for example, Hausman 1978). Misspecification of the functional form of the conditional
response mean or the treatment probabilities are probably more appropriate for formal
diagnostics.

In summary, causal inferences based observational data are fragile because they depend
on two things: (1) correct model specification for at least one of two response variables,
the response mean or the treatment probability, and (2) correctly deciding which one it
is. Best approximation under misspecification won’t do. As a consequence, tremendous
importance can fall to diagnostics of model fit. See Buja et al. (2016b) for some useful
diagnostics that are applicable in all types of regressions for i.i.d. observations. But then,
we are no longer doing assumption lean regression.
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9 Generalizations

Focussing regression functionals provides possibilities for generalization. A first and readily
apparent generalization is to statistical functionals other than slopes of the best linear
approximation. Conditional variances come to mind. For example, if medical expenses are
made a function of income, there can be more variation around the conditional mean for
high-income households because they can afford more discretionary medical procedures.

A second and equally apparent generalization is to regressions other than linear OLS,
such as generalized linear models and in particular, to linear logistic regression. The
response is now binary, which suggests modeling conditional Bernoulli probabilities with
a suitable link function and a cost function other than least squares. Interpreting the
parameters as functionals allows the conditional distributions of the binary response to be
largely arbitrary. One need not assume the logistic model is correct. The working model
becomes a heuristic that produces a plausible cost function.

In detail, for a binary response Y ∈ {0, 1} one models the logit of the conditional
probabilities

p(~x) = P [Y =1| ~X=~x] = E[Y | ~X=~x]

with a linear function of the regressors:

logit(p(~x)) = log(p(~x)/(1− p(~x))) ≈ β′~x.

The logit(p(~x)) maps in reverse to a model of the conditional probabilities via the sigmoid
function that is the natural link function of the Bernoulli model:

p(~x) ≈ φ(β′~x), where φ(t) = exp(t)/(1 + exp(t)).

In both cases, we use “≈” rather than “=” to indicate the use of an approximation that
allows varying degrees of misspecification.

The negative log-likelihood of the model when n → ∞ results in a population cost
function whose minimization produces the statistical functional (= estimand = “population
parameter”) as follows:

β(P ) := argmin
β∈IRp+1

E
[
log
(

1 + exp
(
~X
′
β
))
−
(
~X
′
β
)
Y
]
. (9)

The usual estimates β̂ are obtained by plug-in, replacing the expectation with the mean
over the observations and thereby returning to the negative log-likelihood of the sample.

Interpretations and practice follow much as earlier, with the added complications caused
by the nonlinear link function φ(t). The estimate β̂ correspond to a best approximiation

φ(β′~x) of the true response surface p(~x). The estimates p̂(~x) = φ(β̂
′
~x) are able to target

only the best approximation φ(β′~x) where β = β(P ), not the true p(~x). The approxima-
tion discrepancy p(~x)− φ(β′~x) does not vanish with more data, n→∞.
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For standard errors, and statistical tests and confidence intervals based on them, one
should use the appropriate sandwich estimators or standard error estimates obtained from
the nonparametric x-y bootstrap. Both have asymptotic justification under i.i.d. sampling
of the tuples (Yi, ~Xi) for the best approximation target β(P ).

Finally, under misspecification the regression functional β(P ) will generally, as before,
depend on the distribution regressor P~X

. The regressors cannot be treated as ancillary
and not held fixed. The regression functional β(P ) can have different values depending on
where in the regressor space the data fall.

10 An Empirical Example Using Poisson Regression

In order to show the ease with which the functional view can be applied within the gener-
alized linear model, we consider an application using Poisson regression. The estimand is
a best log-linear approximation of the true response surface, not the true response surface
itself.

The particular Poisson regression will be applied to data from a criminal justice agency.
Here is some context. An important feature of an arrest is the charges that police choose
to file. One crime event can lead to one charge or many. Each charge for which there is
a guilty plea or guilty verdict will have sanctions specified by statute. For example, an
aggravated robbery is defined by the use of a deadly weapon, or an object that appears to
be a deadly weapon, to take property of value. If that weapon is a firearm, there can then
be a charge of aggravated robbery and a second charge of illegal use of a firearm. There
can be penalties for each. A greater number of charges can be used by prosecutors as plea
bargaining chips and can place an offender at greater risk of sanction. In this illustration,
we consider correlates of the number of charges against an offender filed by the police.3

The dataset for our illustration contains 10,000 offenders arrested between 2007-2015
in a particular urban jurisdiction. The data are a random sample from over three hundred
thousand offenders arrested in the jurisdiction during those years. This pool is sufficiently
large to make an assumed infinite population and iid sampling good approximations. Dur-
ing that period, the governing statutes, administrative procedures, and mix of offenders
were effectively unchanged – there is a form of criminal justice stationarity. We use as the
response variable the number of charges associated with the most recent arrest. Several
regressors are available, all thought to be related to the outcome. Many other relevant
regressors are not available (e.g., the consequences of the crime for its victims).

The approximation adopted here is a Poisson regression. It is a working model about
which we make no claim that it is correctly specified. Consequently, we forfeit any causal
claims, and we are not proposing any of the regressors as manipulable interventions. Fi-
nally, our assumption lean framework does not require that the response follows a condi-

3 Although the charges are specified by the police, they are typically reviewed by prosecutors who may
change the charges.
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Coeff SE p-value Boot.SE Sand.SE Sand-p
(Intercept) 1.8802 0.0205 0.0000 0.0522 0.0526 0.0000
Age -0.0147 0.0006 0.0000 0.0016 0.0016 0.0000
Male 0.0823 0.0127 0.0000 0.0284 0.0299 0.0058
Number of Priors 0.0031 0.0002 0.0000 0.0005 0.0005 0.0000
Number of Prior Sentences 0.0002 0.0016 0.8868 0.0040 0.0039 0.9519
Number of Drug Priors -0.0138 0.0008 0.0000 0.0021 0.0020 0.0000
Age At First Charge 0.0028 0.0009 0.0012 0.0022 0.0021 0.1935

Table 1: Poisson Regression Results for The Number of Crime Charges (n=10,000)

tional Poisson distribution. One reason for violating Poissonness is that the binary events
constituting the counts do not need to be independent. Indeed, independence would be
unrealistic. If the crime is an armed robbery, for example, the offender would be charged
with aggravated robbery and a weapons offense. Ordinarily, such dependence would be a
concern.

The results of the Poisson regression are shown in Table 1. The columns contain, from
left to right, the following quantities:

1. the name of the regressor variable,

2. the usual Poisson regression coefficient,

3. the conventional standard errors,

4. the associated p-values,

5. standard errors computed using a nonparametric x-y bootstrap,

6. standard errors computed with the sandwich estimator, and

7. the associated sandwich p-values.

Even though the model is likely misspecified by conventional standards for any number
of reasons, the coefficient estimates for the population approximation are asymptotically
unbiased for the population best approximation. In addition, asymptotic normality holds
and can be leveraged to produce approximate confidence intervals and p-values based on
sandwich or x-y bootstrap estimators of standard error.

With 10,000 observations, the asymptotic results effectively apply. None of this would
be true for inferences based on assumption-laden theories that assume the working model
to be correct.

The marginal distribution of the response (number of charges) is skewed to the right:
The mean number of charges range from 1 to 40, with a mean of 4.7, a standard deviation
of 5.5. Most offenders have a relatively small number of charges, but a few offenders have
many.

Table 1 shows that some of the bootstrap and sandwich standard errors are rather
different from the conventional standard errors, indicating indirectly that the conditional
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Poisson model is misspecified (Buja et al. 2016a). Moreover, there is a reversal of the
test’s conclusion for “Age at First Charge” (i.e., the earliest arrest that led to a charge
as an adult). The null hypothesis is rejected with conventional standard errors but is not
rejected with a bootstrap or sandwich standard error.

This correction is sensible because a natural expectation would have been that the slope
of “Age At First Charge” should be negative, not positive. Typically individuals who have
an early arrest and charge are more likely to commit crimes later on for which there can
be multiple charges.

In the present Poisson model, exponentiated regression coefficients are multipliers of
the charge counts. We interpret each regressor accordingly if the null hypothesis is rejected
based on sandwich/bootstrap standard errors:

• Age: Starting at the top of Table 1, each additional year of age multiplies the average
charge count by a factor of 0.98. Ten additional years of age reduces the count by a
factor of 0.86. Older offenders have fewer charges perhaps because the crimes they
tend to commit are different from the crimes younger offenders commit. For instance,
the crimes of younger offenders may be more likely to be gang-related.

• Male: Men on the average have a greater number of charges than women. The
multiplier is 1.08, which means that there is about a 8% average difference. Compared
to a women at the women’s mean of 4.7 charges, a man would on the average have
5.1 charges, holding all other covariates constant.

• Number of Priors: To get the same 8% increase from the exponentiated regression
coefficients for the number of all prior arrests takes an increment of about 25 priors.
Such increments are common. About 25% of the offenders in the data are first
offenders (i.e., no prior arrests), and another 30% have 25 or more prior arrests. A
gap of 25 priors is common in these data.

• Number of Drug Priors: Offenders with a greater number of prior arrests for drug
offenses on the average have fewer charges after controlling for the other covariates.
Drug offenders often have a large number of such arrests, so the small coefficient of
-0.0138 matters. For 20 additional prior drug arrests, the average charge count is
multiplied by a factor of .76. A long history of drug abuse can be debilitating so
that the crimes committed are far less likely to involve violence and often entail little
more than drug possession.

In summary, offenders who are young males with many prior arrests not for drug possession,
will on average have substantially more criminal charges. Such offenders perhaps are
likely to be disproportionately arrested for crimes of violence in which other felonies are
committed as well. Therefore, a larger number of charges would be expected.

What about causal inference? It makes little sense to envision manipulating any of
the regressors with all other regressors fixed. The different measures of prior record and
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age at first arrest are in the past. Even if one could alter them, many other upstream
regressors would be altered as well. Gender and age are inherent features of an offender.
It also makes little sense to assume that all excluded regressors are independent of those
that are included. For example, there is no measure of gang membership in the data. But
even if gang membership were a regressor, one surely would not have exhausted the list of
potential confounders.

If causal inference is off the table, what have we gained? For one thing, we acquired
a general understanding of certain associations among variables of interest. In particular,
it is instructive that the findings are largely consistent with past research. Note that we
still care about the signs of the regression coefficients as indicators of the direction of
association between the response and a regressor adjusted for the presence of the other
regressors. What has changed is that the rigidity of interpretation based on correct model
specification is abandoned and replaced by greater realism and skepticism about what a
regression coefficient is able to convey.

As for predictive use of the regression, the results could in principle be applied in real
settings to inform risk assessments in future cases. We qualify such use with the cautions
of Section 8.2 according to which prediction covergance is for a population of future cases
that behave like the past population, not any fixed location in regressor space. To this
end, prediction intervals should be directly calibrated on the data, not based on model
trusting theory. The widths of such intervals can inform users whether the model contains
any actionable information at all.

We have seen indirect indications of model misspecification Traditional model-trusting
standard errors differ from assumption lean sandwich and bootstrap standard errors. Be-
cause of model misspecification, it is likely that the parameters of the best fitting model
depend on where in regressor space the mass of the X-distribution falls. This raises con-
cerns about the performance of out-of-sample prediction. If the out-of-sample data are
not derived from a source stochastically similar to that in the analyzed sample, then these
predictions may be wildly inaccurate.

11 Conclusions

Treating models as best approximations should replace treating models as if there are
correct. Best approximations proceed with a fixed model explicitly acknowledging approx-
imation discrepancies, sometimes called “model bias,” which do not disappear with more
data. The model bias, however, does not create an asymptotic bias in estimates of best ap-
proximations. Parameters of best approximations are estimated with bias that disappears
at the usual rapid rate.

In regression, a fundamental feature of best approximations is that they depend on
regressor distributions. It follows that one cannot condition on regressors and treat re-
gressors as fixed. Regressor variability must be included in treatments of the sampling
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variability for any estimates. This can be achieved by using model robust standard error
estimates in statistical tests and confidence intervals. Two choices are readily available:
sandwich estimators and bootstrap-based estimators of standard errors. For the latter,
a strong arguments favor the nonparametric x-y bootstrap over the residual bootstrap,
because conditioning on the regressors and treating them as fixed is incorrect when there
is misspecification.

In this article, we also offered at least three ways in which best approximations can be
informative in practice: (1) model parameters are re-interpreted as regression functionals,
(2) predictions are for populations rather than at fixed regressor locations, and (3) there
exist well-known connections between misspecification with causal inference.

In summary, it is easy to agree with G.E.P. Box’ famous dictum, but there are conse-
quences affecting the mechanics of statistical inference and the interpretations of statistical
estimates. Assume and proceed statistics does not suffice. Nor does hand waving.
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