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Abstract

Forecasts of prospective criminal behavior have long been an im-
portant feature of many criminal justice decisions. In this paper, we
apply a form of kernel logistic regression to forecast at an arraign-
ment whether an individual charged with drug possession will return
to court when ordered to do so. The practical goal is to help inform a
magistrate’s release decision. We focus on individuals with drug pos-
session charges because they have atypically high rates of failures to
appear (FTAs). We apply a form of kernel logistic regression because
recent work has shown that conventional logistic regression typically
will not forecast as accurately as machine learning procedures. Our
approach to kernel logistic regression, which can be seen as a hybrid
of conventional logistic regression and machine learning, clearly domi-
nates conventional logistic regression as a forecasting tool, and in some
settings can be a legitimate competitor to machine learning procedures
such as support vector machines, stochastic gradient boosting, and ran-
dom forests. The methods applied are implemented in the R package
kernReg currently available on CRAN.

*Electronic address: berkr@sas.upenn.edu; Corresponding author



1 Introduction

According to the Bail Reform Act of 1984, “risk of flight” should be a key
determinant of release decisions made at arraignment (Adair, 2006). A de-
fendant’s “failure to appear” (FTA) at a subsequent court proceeding, after
being ordered to do, can be thumb in the eye of judicial authority and may
mean that the defendant’s criminal charges are never adjudicated. When
large numbers of defendants fail to appear at mandatory court proceedings,
the legitimacy of the criminal justice system is challenged.

All arraignment release decisions informed by the risk of flight necessarily
require forecasts. Magistrates or judges are tasked with looking into the
future and determining that chances that a given defendant will return to
court on a specified date. Clearly, a lot is at stake. Defendants may be held
when there is no need or defendants may be released when some form of
incapacitation is required. Forecasting accuracy really matters.

In this paper, we focus on defendants charged with drug possession in
part because they often have atypically high rates of FTAs. They are also
at the center of efforts to roll back the “war on drugs” that many believe “is
doing more harm than good” (Drug Policy Alliance, 2014). In November
of 2014, for example, New Jersey voters passed a ballot measure amending
the state constitution, which when coupled with recent legislation, autho-
rizes a range of pre-trial reforms that would benefit non-violent offenders,
including the substantial fraction charged to drug possession (Amick, 2014).
Better risk prediction is a key feature of these reforms (VanNostrand, 2013).
Our intent here is to show how arraignment release decisions for defendants
charged with drug possession can be better informed by sufficiently accu-
rate forecasts of FTAs. We apply a form of kernel logistic regression, which
has some attributes as machine learning and can perform far better than
conventional logistic regression.

There is ample precedent for our interest in arraignments. At least
since the Manhattan Bail Project in 1961, there have been serious efforts
to reform the ways bail decisions are made (McElroy, 2011). Among the
most important changes have been to take quantitative risk assessments
far more seriously. Numerical risk scales are used to inform bail decisions
and procedural reforms (Clarke et al., 1976; Goldkamp and White, 2006;
VanNostrand and Keebler, 2009; Bornstein et al., 2012; Arnold Foundation,
2013).

Section 2 provides a brief summary of criminal justice risk assessment
and some recent advances. The field is undergoing important changes. Sec-
tion 3 addresses kernel logistic regression in general and variants on it. We



summarize the underlying statistical theory, a rationale for kernel dimen-
sion reduction, asymmetric costs from forecasting errors, the role of tuning,
and a proper context for statistical inference. We also briefly discuss the
implementation of our procedure, which is found in the R package kernReg
currently available on CRAN. Section 4 is devoted to forecasting whether af-
ter an arraignment defendants charged with drug possession later return to
court when required to appear. The forecasting task is very challenging be-
cause of important omitted variables and little convincing theory to guide
model specification. Results from conventional stepwise logistic regression
and our proposed “regularized” kernel logistic regression are compared. The
legitimacy of such comparisons is discussed as well. In Section 5, we conclude
and provide recommendations to the practitioner who wishes to employ our
methods.

2 Some Background on Criminal Justice Risk As-
sessment

Conventional criminal justice risk assessments have their roots in parole
decision-making dating back to the 1920s (Borden, 1928). The roots run
deep. Even very recent methods typically rely on scaling approaches devel-
oped by Earnest Burgess shortly after World War I (Burgess, 1928). Com-
pared to clinical judgment or craft lore, they have served devision-makers
well (Dawes et al., 1989; Grove, and Meehl, 1996).

Criminal justice risk assessment technology typically begins with one or
more behavioral outcomes to be forecasted. Felony arrests are an example.
A search for “risk factors” associated with the outcomes usually follows.
Prior record, age and gender are among the risk factors usually found. The
risk factors are ordinarily combined in a linear fashion to produce a numer-
ical score. The higher the score, the greater the presumptive risk. Subse-
quently, when measures of the risk factors exist, but a behavioral outcome
is not yet known, a risk score can be computed and used to make a forecast.
The forecast either can be a score that attempts to capture the degree of
risk or can be translated into a binary outcome class such as “fail” or “not
fail” using a threshold on that score. Scores above the threshold forecast one
class. Scores at or below the threshold forecast the other class. Although it
is often difficult to determine how accurate such forecasts are (Reiss, 1951;
Farrington and Tarling, 2003; Gottfredson and Moriarty, 2006; Ridgeway,
2013b), they are now routinely used to inform a variety of criminal justice
decisions (Berk and Bleich, 2013).



Because the operational outcomes are typically binary, most of the risk
assessment instruments developed over the past several decades have used
logistic regression to determine the relevant risk factors. There is now strong
evidence that more accurate forecasts can be obtained directly from machine
learning procedures (Berk, 2012; Berk and Bleich, 2013; Ridgeway, 2013;
Bushway, 2013) such as random forests (Breiman, 2001), stochastic gradi-
ent boosting (Friedman, 2002), Bayesian additive regression trees (Chipman
et al., 2010) and support vector machines (Vapnick, 1998). These are “black
box” algorithms able to construct complicated “profiles” that sort individu-
als into discrete outcome classes such as an arrest for one of several different
kinds of crime. There is no need for explicit identification of risk factors if
accurate forecasts are the primary goal.

Recent extensions of logistic regression that work well in samples of mod-
est size can be seen as another alternative to conventional logistic regression.
Regressors are “kernel” transformations of the original predictors that will
often include a priori the same kinds of subtle profiles inductively discov-
ered by machine learning. In addition, a variety of methods can be applied
that down-weight features of the kernel having weak associations with the
response variable. The combination of kernel transformations and down-
weighting allows for the number of predictors to be as large or larger than
the number of observations. It costs only additional computer time to intro-
duce far more potential predictors than conventional regression can possibly
manage.

3 Kernel Principal Components Logistic Regres-
sion (KPCLR)

The kernel transformations, a defining feature of all kernel regression meth-
ods, are just the beginning. They set in motion a set of cascading con-
sequences that change conventional logistic regression from a model-based
account of how the data were generated to an algorithmic procedure bent
on maximizing the goodness-of-fit (Breiman, 2001b). We turn now to some
background material needed to motivate the algorithmic procedure we later
apply to forecasts of FTAs. Some of what we consider is novel, especially
the manner in which we incorporate the asymmetric of forecasting errors.



3.1 The Data Generation Mechanism

Conventional regression treats all predictors as fixed, and all results are then
conditional on the predictor values in the data. Often this is not responsive
to how the data were generated or to the empirical questions being asked.
An alternative treats the predictors as random variables, and regression
procedures are altered accordingly (White, 1980; 1982; Buja et al., 2014;
Berk et al., 2014).

We will be using kernel regression methods as forecasting tools. A defin-
ing feature of all forecasting is that the predictors are not fixed. New obser-
vations for which forecasts are needed materialize, typically on some regular
basis. We must proceed, therefore, within a framework that treats all pre-
dictors as random variables. Several key points follow. Details can be found
in the paper by Buja et al.(2014).

The data on hand are viewed as a collection of random realizations from
a joint probability distribution. The joint probability distribution has math-
ematically defined expectations, variances, and covariances. As a result, one
can treat the joint probability distribution as a population. Alternatively,
one heuristically can think of all possible realizations of the random variables
as the population.

In any given dataset, the realized random variables can be (and usually
are) a subset of the random variables that constitute the joint probability
distribution. There is the prospect of “omitted variables.” Moreover, the
variables chosen to be predictors (i.e., X) and the variable chosen to be
the response (i.e., '), are determined by a researcher’s interests, subject-
matter expertise and availabe data. There is no innate property of the
joint distribution itself that determines which random variable should be
the response variable and which random variables should be the predictors
nor what the functional forms connecting the predictors to the response
should be. In short, it is very difficult to make a convincing case that any
statistical formulation derived from those variables is specified correctly.
It follows that the proper estimation target usually cannot be the “true”
response surface, but only an approximation of that true response surface,
whose fidelity with respect to the “truth” is unknown. This presents no
special problems for forecasting because the goal is to arrive at the most
accurate forecasts possible with the data on hand. We will see shortly that
the forecasts can have good statistical properties.



3.2 The ANOVA Kernel

In a regression setting, one begins with the usual predictor matrix X that
has N rows and p columns. Suppose X is subjected to a set of linear
basis expansions represented by ®(X). A simple example of a linear basis
expansion is a polynomial function of each column in X. If cubic, there are
now 3p columns. Thus, ®(X) has N rows and ¢ columns, and ¢ can be
as large or larger than N, and in principle, even infinite. ®(X) can be,
in turn, transformed into an N x N matrix K called a kernel. That is
X — ®(X) — K. For the moment, we focus on K.

Because there are many kinds of linear basis expansions, there are many
kinds of kernels. At this point, there exists little formal justification for
applying one kernel rather than another (Gross et al., 2012; Devenaud et al.,
2013). But experience suggests that in regression applications, the ANOVA
kernel will often perform well. (We provide a brief tutorial on kernels in
Appendix B.)

Beginning with X, the ANOVA kernel is defined by

d

P
k(x,z') = Zexp (=(z; — x;)z) , (1)
j=1

where x; and x; are two different observations’ values for predictor j in
X. These calculations do not produce ®(X). We have gone directly from X
to K. The connection to ®(X) will be addressed shortly.!

Because the computations begin with differences, which after being trans-
formed are added together, the calculations are linear when d = 1, and one
has a linear (additive) representation. When d = 2, one is working with
products that can be seen as two-way interactions and a squared represen-
tation. By the same reasoning, when d = 3, one has three-way interactions
and a cubic representation.? One might think that K could simply replace

1To some readers, the notation used in Equation 1 may be unfamilar. Here are the steps
to compute the kernel matrix K: (1) for observations ¢ and j do an element by element
subtraction over each of the predictors; (2) square each of the differences; (3) multiply
each of these squared differences by minus v; (4) exponentiate each of these products; (5)
sum the exponentiated products; (6) raise the sum to the power of d; and (7) Repeat steps
1-6 for all pairs of observations 7, j to compute all N x N entries in K. A kernel matrix
can be seen as a similarity matrix. Smaller cell entries off the main diagonal imply that
the given pair of observations is more alike in their predictor values.

2To take a simple example, suppose there are three predictors. For the pair of ob-
servations from the first and second row of X with v+ = 1 and d = 1, the sum of
differences is exp (—(mu — 1:12)2) + exp (—(mlg — x22)2) + exp (—(xlg — x23)2). This is



X in logistic regression. This thinking is a step in the right direction, but a
much larger step is needed.

3.3 Reducing the Number of Expanded Predictor Terms

We have denoted the realized predictors by X and their linear basis expan-
sions by ®(X). Suppose, for the moment that we know how to compute the
N x g ®(X). When ¢ > N, &(X) is not a viable regressor matrix as is. The
full set of regression coefficients cannot be uniquely determined.

There are several popular ways to reduce the number of expansion terms
in ®(X) or to down-weight them accomplishing much the same thing. One
option is to apply a conventional principle components analysis (PCA) to
®(X). The resulting N principle components (PCs) would be linear com-
binations of the expansion terms in ®(X) constructed to be uncorrelated
with one another and collectively to incorporate all of the predictive infor-
mation in ®(X), or more technically, in its covariance matrix. How this is
accomplished is addressed in considerable mathematical detail in Appendix
C.

PCs can be ordered from high to low by their contribution to the variance
of the set of expanded predictors. Typically, only a leading subset of the
N principle components is used in a regression analysis because the leading
PCs capture most of the variance for the expanded set of predictors. As
a result, the number of PCs included can be less than N, and the ¢ > N
problem is circumvented. When principle components of ®(X) are used as a
regressor matrix, we call the resulting regression procedure Kernel Principle
Components Regression (KPCR) or, for a binary outcome, Kernel Principle
Components Logistic Regression (KPCLR).

Another recent regularization development is “penalized regression.” The
basic idea is to include a penalty for model complexity as part of the fit-
ting function being minimized. The more complex the estimated model, the
larger the penalty can be. This makes the estimated regression coefficients
smaller in absolute value and the fitted values more smooth. An important
and somewhat counterintuitive benefit can be fitted values that have better
out-of-sample performance, which can be especially important in forecasting
applications. However, unlike principle components regression, the number

linear and additive. For d = 2, the result is [exp (f(xn — 3312)2) + exp (f(a:m — 1'22)2) +
exp (—(x13 — m23)2)]2. All of the terms are now products of two variables, which
are two-way interaction effects. For d = 3, the result is [exp (—(z11 — 212)?) +
exp (7(3312 — 1'22)2) + exp (7(1‘13 — x23)2)}3 All of the terms are now products of three
variables, which are three-way interaction effects.



of regressors does not need to be less than N.

We have found our KPCLR approach to be more robust then penalized
regression for the kinds of problems often endemic in criminal justice data:
highly unbalanced outcomes, long tailed predictor distributions, very differ-
ent costs for false positives compared to false negatives, and a large number
of highly correlated predictors. We will employ the KPCLR approach in our
application.

3.4 The Kernel Trick

The idea of applying PCA to ®(X) might seem like a routine instance of
conventional multivariate statistics. However, in order to do so, the trans-
formations in ®(X) must be known. In empirical settings, they rarely are.
One then has no way to determine the relationship between ¢ and N and
no way to apply PCA to ®(X).? We appear to be at a dead end. But let’s
look a little deeper.

Equation 2 shows the conditional expectation of the response as an ad-
ditive function of a set of linear basis expansions of the predictors.* Y can
be quantitative or binary, the columns of X contain 1,2,...,p predictors,
and there are ¢ linear basis expansion terms constructed from the full set of
original predictors. The ¢ terms of ¢,,(X) we have shown earlier to be the
columns of ®(X).

In principle, one can obtain estimates of 5y and each 3,, that have the
usual desirable properties. The same holds for Y. Were Y quantitative, one
might apply ordinary least squares. Were Y binary, one might maximize a
binomial regression likelihood function.

m=1

However, one must specify each of the basis expansion terms for each
predictor. This is a daunting task unless there was credible subject-matter
theory specifying the expansion for each predictor and data available to
implement those expansions. To take what may seem like a simple example,
what is the correct set of expansion terms for the relationship between the

3Recall that the use of linear basis expansions means that ¢ > p, usually substantially
larger, and q can easily be larger than N. There is no way to know for sure, but prudence
dictates that one assume the worst. Some kind of dimension reduction procedure should
be applied.

4Because the data on hand are composed of random variables, the estimation target is
a conditional expectation of the response, not a conditional mean.



age of an offender and recidivism? The relationship is well known to be
negative and nonlinear (Berk, 2012), but there is a very large number of
potential nonlinear functions. Moreover, the particular expansion terms
used will depend on the kind of recidivism (e.g., all new arrests versus all
new felony arrests) and features of the offender (e.g., gender).

Kernel methods respond in a remarkable way. As we address in sub-
stantial technical detail in the Appendix C, there is a formal mapping from
the original predictors to a set of linear basis expansions to a particular
kernel. Recall that when the ANOVA kernel was introduced, the mapping
went directly from X to K. The intervening ®(X) was bypassed.

The kernel trick (Hastie et al., 2009: 660), justifies proceeding directly
from the original predictors contained in X to K because K = ® (X)® (X) .
Thus, there is no need to ever compute the linear basis expansions. The
mathematics of PCA dictate that information they contain is incorporated
in K and is sufficient undertaking a principle components analysis of ®(X).
The corresponding PCs can then be incorporated into standard regression
methods. It follows that within the kernel framework, the basis functions
themselves are unknown and unrecoverable. They are locked up in the black
box. But then, how can one determine if the linear basis expansions are any
good?

Kernels are designed to incorporate a priori a very rich menu of expan-
sion terms, often hand-tailored for particular applications. Popular kernels
typically are battle-tested in real scientific and policy settings. The ANOVA
kernel we favor for regression is one example. Moreover, if the goal is fore-
casting, a kernel is judged by its forecasting accuracy. Is the accuracy good
enough to usefully inform the decisions to be made and more accurate than
competing forecasting procedures that rely on functional forms specified
using via subject-matter knowledge? We consider these issues in the appli-
cation presented later.

One might still worry that without ®(X), important information is lost.
If the primary goal is to understand better why the predictors are related to
the response, the loss is important. Explanation is severely compromised.
If the primary goal is forecasting accuracy, the loss may well be irrelevant.
The kernel matrix K incorporates the predictive information contained in
®(X).5 To summarize, one would like to reduce the number of columns in

At the same time, the values in the kernel matrix can be instructive. Consider the
first column of an ANOVA kernel as an illustration. The values in that column are the
set of similarities the first observation has with all other observations. To what degree do
other observations have a profile like the first observation? Then one can use regression
to determine if defendants who are more similar to the first defendant more likely to no-



®(X). Principle components analysis is one good option. However, ®(X) is
not available. One only has K. Thanks to the kernel trick, one can apply
principle components analysis to K to arrive at the desired result.

3.5 Introducing the Relative Costs of False Positives and
False Negatives

In criminal justice policy settings, the costs of false negatives and false pos-
itives will generally be different. For example, when a release decision needs
to be made at arraignment, there are two kinds of mistakes that can be
made. An individual is released and then fails to appear at a subsequent
court hearing or an individual is not released and would have appeared. The
consequences and costs of these mistakes are rather different and should be
built into the forecasts of failure to appear; they should affect the forecasts
themselves (Berk, 2012).

Forecasting procedures can differ dramatically in the mechanisms by
which the different relative costs of forecasting errors are be introduced.
For conventional logistic regression, a popular option is to impose threshold
on the fitted values (Seed, 2010). Values larger than some threshold imply
that the associated observations belong in one outcome class, and fitted
values equal to or smaller than that threshold imply that the associated
observations belong in the other outcome class. A widespread “default” is
to ignore asymmetric costs and employ a threshold of .50.

If the logistic regression model meets all of the conventional assumptions,
the fitted values can be interpreted as asymptotically unbiased probability
estimates. Then, if estimated probabilities are greater than .50 one outcome
class is forecasted, and if estimated probabilities are equal to or smaller than
.50 the other class is forecasted. Implicit is that the costs of false positives
and false negatives are exactly the same.

A variety of relative costs can be easily introduced using different thresh-
olds. Suppose there are two outcome classes following an arraignment, ar-
rested for a felony (coded “1”) or not arrested for a felony (coded “07).
One might call the arrested class a positive and the non-arrested class a
negative. Here, the 1/0 values and the terms “positive” and “negative” are

show in court. In effect, one shared profile potentially associated with an FTA is being
identified. For the second column, there is similar reasoning: are defendants who are
more similar to the second defendant more likely to be arrested? All other columns can
be interpreted in the same fashion. The kernel trick can help provide answers to such
questions, but does not reveal what those profiles actually are. This is a consequence of
the black box.

10



assigned arbitrarily. A false positive would be incorrectly forecasting an
arrest. A false negative would be incorrectly forecasting the absence of an
arrest. Then, suppose stakeholders determine that false negatives are twice
as costly as false positives. Imposing a threshold of .33 on the fitted values
forces the false negative to false positive cost ratio of 2 to 1 on the forecasted
class (i.e., .67/.33). That is, for a case to be forecasted as an arrest, its fitted
value must be in excess of only .33. If not, the forecasted class is the absence
of an arrest. It is “easier” to forecast an arrest, which is consistent with the
stated cost ratio. In contrast, a threshold of .75 implies a cost ratio of 1
to 3 (i.e., .25/.75). False positives are now three times more costly. It is
“harder” to forecast an arrest. We will see later that this simple approach
for introducing asymmetric costs does not live up to its promise.

For KPCLR, the introduction of relative costs is done somewhat differ-
ently. When a logistic regression is run, the data are weighted so that the
marginal distribution of the response is altered, and the logistic regression
is fit with these weights. Suppose a positive is an FTA, a negative is the
absence of an FTA, and false positives are taken to be twice as costly as false
negatives. Case weights are given to the logistic regression so that actual
positives have twice the weight of actual negatives.® Not surprisingly, this
does not immediately produce results in which false positives are twice as
costly as false negatives. As we describe in more detail shortly, the KPCLR
fitting algorithm we employ gradually increases the complexity of the fitted
values. When the increasingly complex fitted values arrive at the specified
cost ratio, one can have the requisite cost-ratio result.

3.5.1 Tuning and Statistical Inference

Researchers are gradually coming to realize that model selection is not with-
out its inferential perils. Conventional approaches in which model selection
and statistical inference are undertaken with the same data risk serious bias
in parameter estimates and highly misleading confidence intervals and statis-
tical tests (Leeb and Pd&tscher, 2005; 2006; Berk et al., 2010). Unfortunately,
the importance of tuning parameters puts us squarely in the middle of these
problems. We have found no practical solutions besides using split samples.
The recent literature is quite rich, but key problems are not yet solved (Berk
et al., 2013; Lockhard et al., 2013; Voorman et al. 2014).

Split sample approaches properly implemented promise valid statistical
inference at the price of reduced statistical precision (Berk et al., 2010) and

5The weights are introduced as a vector of length N with values that leave the effective
sample size unchanged (i.e., they have a mean of 1.0).

11



more complicated data management. Often, this is a tradeoff well worth
making (Faraway, 2014). The basic idea is to use different random subsets
of the data for different data analysis tasks. Model selection, parameter
estimation, and model forecasting performance are not undertaken with the
same data.

Our approach has some novel features. We will proceed sequentially
using the following operations.

1. The data are randomly split into three disjoint subsets we will call
training data, validation data and test data.

2. Stakeholders supply relative costs of false positives and false negatives,
and these two costs are used to construct case weights for the training
data.

3. A set of promising ANOVA kernels is specified with different tuning
parameters (v and d) from which KPCLR models will be built. For
reasons discussed earlier, we favor ANOVA kernels for regression ap-
plications.

4. For each kernel, a set of proportions of variance explained is de-
fined (i.e., values for p) that will be used to determine the number
of principle components provisionally included (e.g., p = 35%,p =
40%, ...,p = 95%).

5. For each kernel in step 3 and each value of p in step 4, a KPCLR
model is built with the training data.

6. Using performance with the validation data as a guide, one preferred
KPCLR model is chosen by applying procedures to be explained shortly.
We have not seen this approach in the existing literature on dimension
reduction (e.g., Bithlmann and van de Geer, 2011).

7. Forecasting accuracy is determined for the model selected in Step 5
by predicting into test data using the preferred regression model built
from the training data.

These steps come bundled with many demanding particulars. To begin,
there is currently no clear statistical guidance on the relative sizes of split
samples, even when there are only two (Faraway, 2014). A lot depends on
features of the data and the models being used. Samples of equal size are
often reasonable; this we recommend as a default.

12



The weights used in the logistic regressions are determined a prior: by
the cost ratio of false positives and false negatives. Once a cost ratio is
determined, the weights follow as a simple mathematical exercise. For our
analysis of FTAs, false negatives are taken to be twice times the cost of
false positives. Therefore, all actual non-FTA cases are given three times
the weight of all actual FTA cases, scaled so that the effective sample size is
unchanged. Perhaps counter-intuitively, this cost ratio implies that before
a defendant is projected to a good risk for release, the statistical evidence
must be quite strong.

Sets of values for the ANOVA kernel parameters v and d must be spec-
ified. This will be easier if all predictors in X are standardized as z-scores.”
For example, d might be 2 or 3, and initial values for v could range from
.01 to 100 as multiples of 10: .01, .10, 1.0, 10, 100. The search could then
become more concentrated around the most promising initial values. Be-
cause the models are evaluated with out-sample-performance, the primary
penalty of model searching is additional computation. We have found that
a consideration of five to ten models can be sufficient and provide example
in Section 4.

The number of principle components needed as regressors must be de-
termined empirically by fitting models with different proportions of variance
explained (e.g. p = 30%, 35%,...,95%). For each combination of d, v, and
p, a KPCR model is built. This may seem quite daunting, but with our soft-
ware, a rich set of models can be produced in a matter of minutes because
many computationally demanding steps have been parallelized.

Model evaluation follows. For each model, we provide (1) the number of
false negative errors and the number of false positive errors when predicting
into the validation data, (2) the aggregate cost-weighted error when predict-
ing into the validation data and (3) the proportion of PCs used. A first cut
eliminates all models whose cost ratio of false negatives to false positives is
not sufficiently close to the stakeholder-specified cost ratio. Such models are
not responsive to stakeholder policy preferences. A second cut eliminates all
models with an adequate cost ratio, but disappointing forecasting accuracy.
Among the models that make the second cut, preference is given to models
that use fewer principle components. There seems to be no point in wasting
degrees of freedom. The reduced model we refer to as the “selected” model.

There are some tricky issues at this stage because of the temptation to
treat each KPCLR as a usual linear model popular in the social sciences.

If the predictors are not standardized, the values of the turning parameters can be
dramatically affected by the units of measurement, which are here a distraction.

13



None are. Once the regressors are kernelized, logistic regression becomes a
black box algorithm from which to construct useful forecasting procedures.
There is no intent nor capability to reveal the subject-matter mechanisms by
which the response is related to the original predictors. In addition, most of
the usual regression diagnostics are not relevant and can even be misleading.
One key reason is that we are interested in forecasting accuracy for each of
the outcome classes (e.g., fail or not fail), not the logistic regression fitted
values. Yet, most regression diagnostics build on the in-sample fitted values,
often treated as probabilities.

For the selected model, the test data (i.e., the third random split) are
then used to provide an honest assessment of forecasting accuracy. These
are out-of-sample assessments because the third split had no role when con-
structing the model and no role when selecting the best model. Thus, they
are not subject to overfitting. Nevertheless, there may be residual concerns
about overfitting when earlier the “best” KPCLR model is selected. Just as
in boosting of binary outcomes, the iterative process can produce dramatic
overfitting. Yet in general, overfitting of the fitted value in training data can
actually benefit out-of-sample forecasting accuracy (Mease et al., 2008).

This counter-intuitive result makes sense in the machine learning world
of classification. With a rich menu of predictor transformations summarized
by an increasing number of principle components, any training data fit will
improve until it can improve no more. That fit will have two components.
The first is systematic features of the training data that may normally be
very hard to find, but can be captured by a sufficiently rich kernel expansion
and a sufficient number of its principle components. The second is idiosyn-
cratic patterns in the training data swept up in fitting process that are not
features of the joint distribution from which the data came. The latter are
often characterized as chance variation. When people speak of the dangers
of overfitting, they are referring to the fitting of this chance variation only.

If one constructs a forecasting procedure and evaluates its performance
using the same data, the two components cannot be disentangled. There is,
then, a genuine reason for concern. But if there are data not used to build
the forecasting procedure that can be used for performance assessments,
one can obtain honest performance evaluations without the contaminating
effects of overfitting. One is then left with the benefits of the hard-to-find,
systematic features of the data.

We capitalize on just such thinking. KPCLR models are undertaken
with the training data, in which overfitting can be a virtue. KPCLR model
selection is done with the second split, the validation data to help counteract
the misleading properties of in-sample assessments. Once a KPCLR model
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is chosen, an honest evaluation of forecasting accuracy is provided by the
third split, the test data. For the KPCLR model chosen, this evaluation is
not a product of overfitting.

With this split sample approach, one has forecasting tools with good
statistical properties. Perhaps most important, one has a forecasting pro-
cedure that provides asymptotically unbiased forecasts derived of the pop-
ulation response surface approzimation (Buja et al., 2014). But, the price
should now be clear. Each subsample will have many fewer observations
than the original data set, and forecasting accuracy can be substantially re-
duced. In addition4, any estimator properties that depend on conventional
asymptotics can be put in harm’s way. In the example we turn to shortly,
sample sizes will be relatively large to minimize the consequences of these
difficulties.

4 An Application

For a large metropolitan area, we develop procedures to forecast FTAs
among defendants charged at arraignment with drug possession. The long
term goal is to develop forecasting procedures to help inform release deci-
sions by magistrates. FTA is defined as a failure to appear in court after a
preliminary arraignment in which formal charges are not dismissed.

As noted earlier, we focus on the subset of defendants charged with drug
possession because they can be a substantial FTA risk, constitute a signif-
icant fraction of pre-trial defendants, and are at the center of many “bail
reform” efforts. A common from of stepwise logistic regression and KPCLR
are applied in an effort to obtain serviceable forecasts.® Their compara-
tive forecasting performance is also a major interest. Both procedures will
be challenged because, as we explain shortly, the forecasting task is very
difficult.

We treat the forecasting exercise as illustrative. Should the results be
sufficiently promising, a new analysis probably will be needed using the most
recent data available at that time. It might also be possible to pool current
data with new data, or even fold in older data, if the mix of defendants and
circumstances surrounding FTAs has been relatively stable. Also, stake-
holder preferences are still quite fluid. There are several other subsets of
defendants that could be of interest or more likely, all defendants will be
included in a single analysis. Likewise, the cost ratio of false negatives to

8 A stepwise procedure is used because researchers typically select a relatively few “risk
factors” from among a much larger set of predictors.
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false positives is provisional.

4.1 The Data

We obtained data for defendants released during the most recent two weeks
available that allowed for a two year follow-up period: the last 15 days of
October, 2011, with the follow-up period ending on October 31st, 2013.°
There are 596 observations. Each observation is a single bail decision for a
single defendant referred to as a “case.” Although in principle, a defendant
can appear in the data more than once because of separate arrests for two
or more crimes, the two-week interval effectively precludes that possibility.
We treat the data as a set of realizations from the joint probability distribu-
tion applicable for those two weeks, although it probably applies far more
generally.

From existing electronic criminal justice records, we have the usual back-
ground variables such as age, gender, and prior record. We have the types
of charges heard at the arraignment. And, we have each defendant’s prior
record as a juvenile. For prior record as either an adult or a juvenile, we
have the date on which each arrest occurred. Finally, we have any records
of failures to appear in court for two years after their release.

Although an FTA is a violation, it often has a different etiology from
conventional street crimes. Bornstein and his colleagues (2013) argue that
FTAs often result from a faulty memory, an inability to get timely trans-
portation, household responsibilities such as child care, or work-related obli-
gations. Views about the fairness of the adjudication process can matter as
well. They also show that written reminders can reduce FTA rates, espe-
cially if the reminder provides information about the negative consequences
of a failure to appear.

Unfortunately, among our potential predictors we have virtually no mea-
sures of such factors. It follows that our ability to accurately forecast FTAs
is seriously compromised from the start. We stress, however, that this appli-
cation was not selected to make any particular statistical point. We had no
idea how accurate our forecasts would be prior to our initial forecasting at-
tempts. Nor did we know in advance how the different forecasting methods
would perform. The forecasting problem was brought to us by real stake-
holders who were seeking technical assistance. In retrospect, however, this
forecasting exercise is well suited to our methodological purposes. When a

9Without a release, it would be impossible to learn how the individual performed “on
the street.”
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forecasting task is easy, most any forecasting procedures will do well. Dif-
ficult forecasting tasks allow one to consider the relative performance of
different methods.

4.2 Predictor Variables

There are 41 predictors. We have a few biographical variables such as age,
and gender, but most come from adult and juvenile rap sheets and current
charges.'® Many of the predictors are correlated with one another, often
strongly. Logistic regression can be sensitive to high multicollinearity, but
with our main interest in forecasting accuracy, it does not cause serious
problems. Fitted values are less affected by multicollinearity than estimates
of the regression coefficients, and the dimension reduction tools we apply
moderate much of the remaining instability.

As already noted, there is virtually no information on routine life circum-
stances that might influence a failure to appear. This makes the forecasting
challenge substantial. Ideally, the variables we are able to include can serve
at least in part as proxies for more important omitted predictors. The full
set of predictors is listed in Appendix A.

4.3 Cost Ratios

For this exercise, a “positive” is an FTA. A “negative” is the absence of an
FTA. A false positive is incorrectly predicting that an individual will not
appear in court when ordered to do so. A false negative is incorrectly pre-
dicting that an individual will appear in court when the individual actually
will not. For criminal justice stakeholders, both forecasting errors are unde-
sirable and both have costs. When researchers accept the default procedures
provided by the usual logistic regression software, they are accepting a de-
fault fitting function is which the two costs are treated the same: the costs
are symmetric, and their cost ratio is 1 to 1. This is usually inconsistent
with the preferences of stakeholders who will use and be affected by the
forecasts.

0The rap sheet data only include arrests from within the state in which the metropoli-
tan area is located. But most crime, like most politics, is local. Relatively few arrests are
missed. Moreover, the impact of priors on forecasting accuracy is highly nonlinear. Al-
though there are special concerns about “frequent flyers,” variation of several prior arrests
(e.g., 35 arrests versus 40 arrests) is for such offenders unrelated to forecasting accuracy. If
out-of-state arrests matter for prediction, it is for offenders with very few in-state arrests.
But then, there is some evidence that other predictors pick of the slack.
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At the time the project began, the metropolitan area in which the fore-
casting was to be done had serious resource constraints. There was insuffi-
cient jail space should the forecasts produce a large number projected FTAs
cases requiring incarceration. Many other jurisdictions face similar prob-
lems (VanNostrand, 2013). A key implication was that the false positives
could be in the aggregate very costly. At the very least, there could be
serious “overcrowding.” Less costly options were being evaluated, but many
had little demonstrable impact or were burdened by legal and political con-
straints. For example, methods that have been used to monitor individuals
on probation may turn out to be illegal for defendants who have yet to be
adjudicated.

There could also be collateral damage to the defendant if he or she were
held unnecessarily. A job could be lost. Important contribution to a family,
such as child care, could be disrupted. And incarceration in the county jail
would at best be very unpleasant.

On the other side, defendants at arraignment have been charged with
criminal offenses, often serious offenses that can be serial in nature. Should
such defendants not return to court, they cannot be held accountable unless
they are apprehended again. In this jurisdiction, FTAs often took a law
enforcement back seat to other law enforcement priorities. Word on the
street was that one might well be able to get away with ignoring court
orders. There were also public relations issues should a defendant released
awaiting trial be arrested for a violent crime.

Balancing all of these considerations is difficult and easily affected by
changes in policy options. For example, if less costly alternatives to jail time
could be found that effectively reduced FTAs, the preferred cost ratio of false
negatives to false positives could change as well. Cost-effective diversion
programs for drug users are an obvious example.

At this point, we provisionally set the cost ratio to favor accurate fore-
casts for those who are released. This means treating false negatives as more
costly than false positives. Before an individual is released, the statistical
evidence must be relatively strong. Relatively weak statistical evidence that
someone will not return to court as required we will be enough to preclude
a release. Because of the cost implications as currently understood, the cost
ratio is set at 2 to 1. In many other criminal justice settings, the false nega-
tive to false positive cost ratio has been 10 to 1 or higher (Berk, 2012). The
2 to 1 cost ratio is an acknowledgement of the pressures false positives could
place on available jail space.
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4.4 Results for Stepwise Logistic Regression

The KPCLR analysis was designed around three even splits of the available
data. How should the data be sampled for a stepwise logistic regression so
that fair comparisons to the KPCLR results can be obtained? Because the
KPCLR forecasting performance would be evaluated with the test sample
of 199 cases, we decided that same should apply to the stepwise logistic
regression. Therefore, two thirds of the data would constitute the training
sample because there was no need for a validation sample. The remaining
third would be used as the test sample. If anything, doubling the size of the
training data would favor the stepwise logistic regression.

All of the available predictors were used in a stepwise selection (backward
elimination using the AIC) applied to the training data. The result was a
smaller model with 17 predictors and estimates for the regression parameters
of that smaller model.'! Fitted values were then obtained from the test data.
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Figure 1: Histogram for Out-of-Sample Stepwise Logistic Regression Fitted
Values (N=199)

Figure 1 shows that the fitted values from the test data are centered
a little above .40. The median is .39, the first quartile is .30, and the
third quartile is .48. But there are also a few cases at 0.0 and 1.0. It is
clear that a substantial majority of the fitted values fall below .50. Some
may choose to interpret these fitted values as probabilities, but because the

"'We used the stepwise regression in R (stepAIC), which is part of the MASS library.
Very similar results were obtained used forward selection.
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logistic regression model is surely misspecified, it is not clear to what chance
process these probabilities refer.

To arrive at forecasted classes, a threshold on the fitted values is required.
Using the 2 to 1 cost ratio, that threshold is .33. (.67/.33 = 2). Table 1
is the resulting “confusion table,” a cross-tabulation of the actual outcome
class by the forecasting outcome class. One would ordinarily examine the
confusion table for insights about forecasting accuracy, but there is a major
obstacle. The empirical cost ratio in the table should be about 2.0. But that
ratio is actually 6.0 (84/14), triple the cost ratio that stakeholders specified.
False negatives are being given far too much weight; they are being treated
as far more important than stakeholder wish them to be. Any forecasts,
therefore, are not responsive to the stated policy preferences. In particular,
the limited available of jail space is being significantly discounted.

Predict No FTA | Predict FTA | Model Error
Actual No FTA 50 84 0.63
Actual FTA 14 51 0.21
Forecasting Error 21 .62

Table 1: Failure to Appear (FTA) Stepwise Logistic Regression Confusion
Table Constructed from the Test Data (N = 199)

But it’s worse. The recommended logistic regression fix for settings in
which the costs of false negatives and false positives are not the the same
does not work as claimed (cf. Seed, 2010). Any confusion table depends
on the distribution of the fitted values as well as the imposed cost ratio.
Suppose an imposed cost ratio is .33. If all of the fitted values happen to be
less than .33, no defendants would be forecasted to fail. If all of the fitted
values happen to be greater than .33, all defendants would be forecasted to
fail. In one case, the empirical cost ratio would be 0.0 and in the other case,
the empirical cost ratio would be undefined. In short, there is no direct
mapping from imposed cost ratio and the empirical cost ratio because the
empirical cost ratio depends on the distribution of the fitted values. We
address this problem explicitly in the KPCLR, analysis.

4.5 Results for KPCLR

We proceeded with the very same three random splits of the data applying
the procedures of Section 2.5, Steps 1-6, and searching over a parameter
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grid with d = 2 or d = 3 and ~ values of .01, 1, 3, 1, 3, 10, or 100. For each
of the candidate kernels, the values of p were fixed at 30%,35%...,95%.
Each kernel’s performance in a logistic regression was judged as principle
components were added in 5% increments of the kernel variance accounted
for. Regression parameters were estimated with the training data, and per-
formance was evaluated using the validation data. Forecasting performance
was assessed with the test data. Four promising ANOVA kernels were found:
(v,d) ={(3,3), (10,3), (100,2), (100,3)}

Figure 2 shows the diagnostic plots for the four kernels used to determine
the preferred model (Step 6 in Section 2.5). Recall that for each logistic
regression, the training data had been weighted by the imposed cost ratio of
2 to 1. These plots were constructed from the validation data, with the goal
of arriving at an empirical cost ratio that was effectively the same as the
imposed cost ratio combined with a small cost-weighted error and a small
value for p.

On the horizontal axis are values of p, the fraction of variance of the
transformed predictors accounted for by the principle components. With
larger values of p, more PCs are used as predictors. The left vertical axis
and black line show the ratio of the number of false negatives to the number
of false positives. Because the target cost ratio of false negatives to false
positives was 2 to 1, the goal was to arrive at empirical results in which
there were two false positives for every false negative — two false positives
are “worth” the same as one false negative. Therefore, there is a horizontal
line at .5 representing the desired result (i.e., 1/2 = 0.5). There are also
horizontal lines as 0.0 and 1.0 defining a band in which the ratio of false
negatives to false positives is reasonably close to .5. The right vertical axis
and red line show the cost-weighted number of forecasting errors in the
validation data.

The vertical blue line in the graph on the upper right, shows the value of
p for the selected kernel. The target ratio of false negatives to false positives
is achieved, the value of p is relatively small, and the cost-weighted error is
as well. Note that each of the other kernels offer potential solutions that
lead to similar results.!?

Figure 3 shows the fitted values when the preferred regression is applied
to the test data. The mean is .56, the first quartile .34 and the third quartile
.77. Compared to the fitted values from the stepwise logistic regression, the

12WWith real data, there can be situations in which none of the proposed kernels are able
to produce the desired cost ratio. As an empirical matter, the analysis fails. Here, there are
several successful kernels. Because the kernels are not given substantive interpretations,
it does not matter which one is chosen as long as forecasting accuracy is acceptable.
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Figure 2: KPCLR Performance as a Function of p

fitted values are far more dispersed with much thicker tails, especially at the
high end — the standard deviation of the fitted values increases from .19
to .26. Greater distinctions are being made between defendants; the fitted
values discriminate better. Moreover, because the fitted values are asymp-
totically unbiased estimates of the fitted values in the population response
surface approxrimation, they can be treated as estimates of the conditional
expectations, which may be interpreted as conditional probabilities. None
of the model misspecification issues that undermined the stepwise logistic
regression are relevant because the estimation target is not the “true” model.

Table 2 shows the out-of-sample forecasting results from the test data.
The cost ratio of false negatives to false positives approximates 2 to 1 quite
well. (i.e., 64/26 = 2.5 which is within 25% of the target). In general, it is
virtually impossible to hit the cost ratio exactly because, as required, the
data were not tuned using the test data. Random sampling error complicates
matters a bit, especially in small samples, but here, the difference between
2.0 and 2.5 makes no practical difference whereas the difference between 2
to 1 and 6 to 1 significantly consequential.

50% of the non-FTAs are incorrectly classified. 34% of the FTAs are
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Figure 3: Histogram for Out-of-Sample Fitted Values from the KPCLR
Procedure

incorrectly classified. By current standards (Berk, 2012), KPCLR performs
reasonably well despite very weak predictors. The imbalance in model per-
formance is an intended consequence of the 2 to 1 cost ratio.

Predict No FTA | Predict FTA | Model Error
Actual No FTA 59 64 0.50
Actual FTA 26 49 0.34
Forecasting Error .30 .56

Table 2: Failure to Appear (FTA) Confusion Table Constructed from Test
Data (N=199) for the KPCLR Procedure.

But, classification accuracy is a secondary consideration. In this research
setting, what matters is forecasting accuracy. Within the data we have,
nearly 36% of defendants arraigned for drug possession, who are not held
in jail, subsequently fail by an FTA. Table 2 indicates that were the court
to release individuals forecasted to return to court when ordered to do so,
30% would fail by an FTA (26/(26+59) = .30). Clearly, this is a modest
improvement in percentage terms. But just as clearly, it is a policy-relevant
improvement for a court system that arraigns about 15,000 drug possession
offenders a year. If our results we used to determine whom to release, there
could be approximately 800 fewer FTA incidents. 800 is a big number from
a practical point of view. Modest relative improvements in the performance
of large criminal justice systems can translate into dramatic absolute gains
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that can make an important, real world difference.!?

It is also possible to do much better. It cannot be overemphasized that
the 30% failure rate among those predicted to succeed results substantially
from the asymmetric 2 to 1 cost ratio. If as a policy matter, false positives
were given less weight, more true negatives would be correctly identified,
and the projected FTA failure rate would be reduced, perhaps dramatically.

One legitimately might wonder about the uncertainty in all of our KP-
CLR results. The data are treated as a set of random realizations from a
joint probability distribution, and the analysis was conducted with three
random splits of the data. Sampling variability is built in. However, we
know of no formulaic way to represent the uncertainty in a credible manner.
There may well be re-sampling strategies, but they come with important
complications. At a practical level, each KPCLR would need to be hand
tuned for every one of a large number of samples. At a theoretical level, un-
certainty can be a particular problem in small samples because re-sampling
procedures depend on asymptotics for their credibility (Efron and Tibshi-
rani, 1993). When you may most need re-sampling, it is least well justified.
And for these data, there is the additional challenge of highly non-normal
distributions — more will be required of the asymptotics. Still, we intend
to explore these issues further in the future. It has long been recognized
that early bootstrap methods left lots of room for improvement, especially
in small samples (Efron, 1987). Techniques like the bootstrap calibration
(Loh, 1991) and the closely related double bootstrap (Nankervis, 2005) per-
haps can help. In addition, we have some ideas about how the tuning can
be automated.

We also applied random forests (Breiman, 2001a) to the data to see if
KPCLR could be benchmarked against a machine learning procedure that
has been successfully used for criminal justice forecasting. For comparability,
random forests was trained on the 2/3rds sample and tested on the 1/3rd
sample. The 2 to 1 cost ratio was imposed. Unfortunately the small size of
the test sample meant that random sampling error was an important factor
in all comparisons. Additional random sampling error was added because
of the sampling built into the random forests algorithm. We made several
comparisons, each with new random splits of the data. Both procedures were
always able to approximate the 2 to 1 cost ratio reasonably well. Sometimes
KPCLR forecasted more accurately. Sometimes random forests forecasted

13We have not considered here the possibility of additional benefits of requiring at least
some individuals to post a bond before release. That is, these figures necessarily represent
the policy status quo.
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more accurately. Both always did better than the marginal FTA rate of
nearly 36%. In short, KPCLR and random forests probably appear to be
effective alternatives to logistic regression, but in small samples any further
conclusions can be obscured by noise.'*

5 Conclusions

Even with a very weak set of predictors, forecasts that a defendant will
return to court as ordered can be serviceably accurate when constructed
from a kernelized principle components regression (KPCLR). The forecasts
can be made more accurate with cost ratios that increase the relative costs of
false negatives. If one had information about defendants’ life circumstances
and views of the criminal justice system, there would be an additional way
to improve such forecasts. Finally, were there effective interventions, such
as mailed or texted reminders, the number of defendants who returned to
court as required could be increased and made more predictable. Although
at this point our findings only apply formally to a single jurisdiction, they
support recent efforts elsewhere to reform pre-trial procedures.

As a technical matter, KPCLR seems to be a useful alternative to con-
ventional logistic regression when a researcher’s primary interest is in clas-
sification and forecasting. By constructing in advance a rich menu of basis
functions, complicated non-linear relationships and interaction effects often
can be captured. Kernelized regression attempts to anticipate complexities
that inductive methods like random forests discover on-the-fly (Brieman,
2001).

Can conventional logistic regression compete? When the predictor dis-
tinctions between outcome classes are uncomplicated, even very simple logis-
tic regression models can perform well. Machine learning and kernel meth-
ods may then confer no special advantage. But as others have emphasized
(Berk and Bleich, 2013, Ridgeway, 2013, Bushway 2013), one cannot know
in advance how complicated the key relationships are. Prudence will often
dictate assuming the worst.

When there is subject-matter knowledge indicating in a convincing man-
ner how to correctly specify a regression model and data available to prop-
erly implement that correct specification, conventional logistic regression

141t would be possible to undertake a large number comparisons with random spits of
the data and compare mean forecasting accuracy. Random sampling error would tend to
cancel out. But whatever the conclusions, they would necessarily be data and cost ratio
specific. Little of general interest would be learned.
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may have no downside. One can have it all: excellent forecasts and genuine
explanatory insight as well. But such requirements seem unrealistic for the
processes by which some people return to court as ordered and some do not.
There is probably not a jurisdiction in the United States with the requisite
subject-matter knowledge and data. Prospects for both in the medium term
are not encouraging. The use of Burgess-like scales constructed from risk
factors determined by logistic regression have done yeoman service in the
past. It is time to move on.
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Appendix A — Candidate Predictors

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

The age of the offender

The gender of the offender

The zipcode in which the offender lives if it is a high crime zip code
The length of the follow up period

The total number of prior charges as a juvenile

The number of “serious” prior charges as a juvenile

The number of “violent” prior charges as a juvenile

The number of sex crime prior charges as a juvenile

The number of firearm prior charges as a juvenile

The number of weapon prior charges as a juvenile

The number of drug prior charges as a juvenile

The number of property crime prior charges as a juvenile
Whether there was any prior charges as a juvenile
Whether there was any violent prior charges as a juvenile
The age of the first adult charge while a juvenile

The number of prior murder charges as an adult

The number of “serious” prior charges as an adult

The number of “violent” prior charges as an adult

The number of sex crime prior charges as an adult

The number of firearm prior charges as an adult

The number of weapon prior charges as an adult

The number of drug prior charges as an adult

The number of property crime prior charges as an adult
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24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

Whether there were any charges at the arraignment

The number of murder counts at the arraignment

The number of weapons counts at the arraignment

The number of property crime counts at the arraignment
The number of drug distribution counts at the arraignment
The number of domestic violence counts at the arraignment
The number of violent crime counts at the arraignment
The number of serious crime counts at the arraignment
The number of sex crime counts at the arraignment

The number of firearm crime counts at the arraignment
The number of drug possession crime counts at the arraignment
The number of sex crime counts at the arraignment

The number of prior FTAs

Whether the individual is currently on probation

The number of prior abscondings

The number of prior probation violations

The number of prior days in jail

The number of prior confinement days

Appendix B — A Brief Tutorial on Kernels and
Regression

Kernel Regression Methods for Forecasting

In a conventional regression analysis, a primary goal is to represent how
one or more predictors are related to a response. Often those relations are
interpreted as causal. But there can also be interest in the fitted values.
Sometimes the fitted values are plotted to provide information about the
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possible nonlinear functional forms. There may be no regression coefficients
to interpret, but the intent is still to characterize how the predictors are
related to the response. Partial response plots used with generalized additive
models are a good illustration (Hastie and Tibshirani, 1990).

Sometimes the fitted values by themselves are of interest. For example,
when the response is categorical, the fitted values can be used for classi-
fication. The goal might be to determine whether particular transactions
are fraudulent. Or the goal might be to provide a diagnosis for patients ex-
hibiting certain symptoms. Such goals do not require that the relationships
between the predictors and the response be captured in ways that are sub-
stantively interpretable. For instance, in principle components regression,
the regressors are linear combinations from the full set of original predictors.
Although post hoc interpretative overlays are sometimes employed, how the
predictors are related to the response is typically obscured. The fitted values
are the essential motivator.

Forecasting is another activity in which the role of predictors need not
be a primary concern. An investor might be deciding which energy futures
are a good bet based on their forecasted returns a year hence. Or a parole
board may decide which inmates to release based on forecasts of whether
a violent crime will be committed. One may achieve excellent forecasting
accuracy with no real understanding about how the predictors are related to
the response (Berk, 2012; Berk and Bleich, 2013; Ridgeway, 2013b, Bushway,
2013). Indeed, it is often productive to make forecasting and explanation
separate data analysis objectives.

If the focus can be exclusively on forecasting, one has the opportunity to
employ predictors in a manner that may dramatically improve forecasting
accuracy even if explanation is severely compromised. Machine learning
is a set procedures that commonly makes this tradeoff; kernel methods do
likewise.

Here, we focus on kernel methods for regression applications in which
the primary interest is in fitted values and subsequent forecasts. We will see
that when complicated nonlinear and/or interaction effects may be needed,
but the precise functions are unknown or the relevant variables are not in
the data set, kernel methods can automatically assemble a very rich menu
of functions that may serve as an effective alternative. Forecasts of useful
accuracy can follow. Although we will later emphasize regression with binary
outcomes, kernel methods can in principle be used in any form of regression
when one is trying to characterize the distribution of a response variable
conditional on a set of predictors.
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Linear Basis Expansions

Linear basis expansions can be building blocks for a wide variety of statistical
procedures and are a critical starting point for a discussion of how kernels
can be employed in regression (Hastie et al., 2009: Section 5.1). For a single
predictor X,

q
FX) =" Bndm(X), (3)
m=1

where the predictor X is replaced by a sum of ¢ transformations of X, each
transformation represented by ¢,,(X). A cubic function in X is a simple
illustration: ¢1(X) = X, ¢2(X) = X2 and ¢3(X) = X3. Here, ¢ = 3, and
the three transformations of X are X, X2, and X3; ¢1(X) = X is a “trivial
transformation.” The corresponding weights (31, 52, and 3 can be conven-
tional regression coefficients. Where there was initially a single function of
X, there are now three functions of X: hence the term “expansion.” Other
kinds of linear basis expansions include trigonometric functions, indicators
variables, and various types of splines (Haste et al., 2009, Chapter 5). The
formulation also is readily extended to more than one predictor. When lin-
ear basis expansions are used kernel applications, it is common to used the
notation ®(X) to represent the collection of linear basis expansions for the
full set of predictors.

The benefits from linear basis expansions depend on two potential con-
sequences of Equation 3. First, the expansion can directly alter how the
relationships between the response and the predictors are characterized. In
the example just given, a cubic function may fit the data better. Second,
by transforming the space in which the observations are located, patterns
may be found that are otherwise obscure. Precisely how this can be done is
considered in later sections. For now, Figure 1 illustrates both possibilities.

The upper part of Figure 1 shows a scatter plot with two predictors, x
and xo. For example, 1 could be the number of prior arrests, and xo could
be age.!?

The open circles represent one of two response outcomes (e.g., rearrested
while on parole). The solid circles represent the other response outcome
(e.g., not rearrested while on parole). There are also two overlays repre-
senting two different decision boundaries. The solid line is a linear decision
boundary. The dashed line is a nonlinear decision boundary.'6

5For ease of exposition, we are playing a little fast and loose with notation at this point
because formally both predictors are vectors. We will get more formal shortly.
16The term “decision boundary” is used because depending on which side of the decision
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Benefits of A Nonlinear Decision Boundary
Or Different Dimension Space

Decision Boundaries

X

3-D

b2(X)

ba(X)

Figure 1: An Illustration of the Gains From a Nonlinear Fit (top figure) or
a Transformed Predictor Space (bottom figure)

The data analyst’s task is to partition the predictor space using a decision
boundary so that all of the open circles fall in one partition and all of the
solid circles fall in the other partition. If one were able to do so, the pair
of predictors x; and x2 would be able to perfectly distinguish between the
two outcomes. The predictors would be able to classify these observations
without error.

It is impossible here to find a linear decision boundary in the 2-D pre-
dictor space that perfectly distinguishes between the open and solid circles.
Any linear attempt to classify cases in these two dimensions will result in
two partitions of the space, with at least one having a mix of open and
solid circles. More technically phrased, there can be no linear “separation”
between the open and solid circles. In Figure 1, for instance, one solid circle

boundary an observation falls, different decisions about that observations can be justified.
For example, one decision might be to release an inmate on parole and another decision
might be to be keep the inmate incarcerated.
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falls in the partition dominated by open circles.

However, Figure 1 shows a nonlinear decision boundary that can parti-
tion the 2-D predictor space discriminating the two response types perfectly.
Nonlinear transformations of the predictors can in principle be helpful in
precisely this way. 7

The lower part of Figure 1 has three predictors, ®;(X), ®2(X), and
®3(X), where X is matrix notation representing both z; and ze. Thus
each predictor is a different basis expansion term using both z; and xo.
For example, the expansion might be a cubic polynomial of an element by
element product x; X x9, where ¢ = 3.18

Each dimension represents a term of the expansion that as a group de-
fines a 3-D space in which the observations can be located. In this new
space, one can see that the open circles are separated perfectly from the
solid circles because the former are located toward the back of the figure,
and the latter are located toward the front of the figure. Therefore, it is
possible to construct a 2-D plane that can perfectly discriminate between
the two response types.

Linear basis expansions are easily extended to higher dimensions. Fig-
ure 1 provides an initial sense of the benefits that we will addressed in
more depth later. But in practice, perfect separation is still very difficult to
achieve. Rather, we seek substantially improved separation.

Kernel Functions and Kernel Matrices

A powerful way to construct and deploy linear basis expansions is to apply
“kernel transformations.” Kernel transformations are defined by a “kernel
functions.” There are many such functions. Some are typically employed in
highly specialized applications. Still, this coupling of kernel to application
is usually justified by little more than hunch or craft lore (Gross et al., 2012;
Duvenaud et al., 2013). We consider here two kernel functions commonly
used in regression settings that seem to work well.
We begin with a toy predictor matrix X:

" There are two ways to think about this. In the original units of the predictors, the
decision boundary is nonlinear. Or in the units of the transformed predictors, the decision
boundary is linear. We show the former in Figure 1.

18 “Flement by element” means x11 X xi2, T21 X T22, ... ,TN1 X N2, Where the first
subscript denotes the observation number and the second subscript is for the predictor
number. ®1(X) is then the element by element product, ®2(X) is the element by element
product squared, and ®3(X) is the element by element product cubed. One might view
the three terms as an interaction effect variable, an interaction effect variable squared,
and an interaction effect variable cubed.
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12320
X=[26111 (4)
01 2

There are 3 rows representing 3 observations, where the number of observa-
tions is conventionally denoted by N. There are 5 columns representing 5
predictors, where the number of predictors is conventionally denoted by p.
To illustrate some important features of kernels, there are more predictors
than cases (i.e., p > N). This does not present an immediate problem but
would if we considered off-the-shelf regression tools.

Because of the nature of the kernel functions to be applied, all of the
elements in X must be numerical. This includes categorical variables. If
C' is the number of categories, it is conventional to use C' — 1 indicator
variables, all coded numerically in the same way (e.g., 0 or 1). For example, if
there are four different kinds of employment (including not being employed),
there would be three indicator variables, where for each, “1” represents the
presence of that form of employment and “0” represents the absence of that
form of employment. This is consistent with common practice in many
different kinds regression applications.

The Radial Basis Kernel

It is nearly universal to denote a kernel function by k(zx, ') where x and «’
are two different row vectors in X.' The radial basis kernel is defined as

k(z, &) = exp (—v[|z —2|)?), (5)

with ||.|| denoting the squared Euclidian distance (i.e. the “sum of squared
differences” also, known as the “norm”), and 7 denoting a scale parameter
greater than 0.

The kernel transformation is created by applying the kernel function to
the data X producing the kernel matriz, a matrix which, as we will see
shortly, contains the predictive information for a proper regression analysis.
To arrive at the kernel matriz K, one computes k for each combination of
rows ¢, j and inserts the kernel value in the ¢, j location of K. Since there
are N observations, there are N comparisons for each observation yielding

19T standard notation, the two row vectors are in RP, which is a p-dimensional Euclidian
space. Here, p = 5 and a row vector is for a given observation its value for each predictor.
For example, age might be 24, years since the last arrest might be 2.5, the number of
prior prison terms might be 2, gender might be male (i.e. “1”), and the number of prior
convictions might be 3.
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an N x N matrix. As an example, consider the second and third row of our
toy X. One has for the sum of squared differences: (2 —0)%+ (6 —6)2+ (1 —
0)24 (1 —1)2+(1—2)? = 6. The sum of squared differences is multiplied by
scale parameter -y, negated, and then exponentiated. If the scale parameter
were 0.01, one can perform all 3 x 3 = 9 calculations to compute

1.0 .79 .73
K=|.79 1.0 94 |. (6)
73 .94 1.0

All kernels matrices are symmetric. Element 4, j is the same as element j, ¢.

The diagonal entries of the radial basis kernel are always 1 (because the
squared distance between any x and itself is 0 and exp (0) = 1), and the off-
diagonal entries are between 0 and 1 (because squared distances are positive
and exp (—AdQ) is bounded between 0 and 1 for positive Ad?).2° Radial
kernels and others that build on Euclidian distances yield K’s that can be
viewed as similarity matrices. Because of the —v in Equation 5, larger off-
diagonal values imply less distance between a given pair of observations,
which means that they have more similar profiles over variables — they are
more similar. Radial basis kernels have proved to be useful in a wide variety
of applications but for regression, there can be a better choice.

The ANOVA Radial Basis Kernel

The ANOVA radial basis kernel is closely related to the radial basis kernel.
Using common notation for the ANOVA kernel,

d

k(x,z') = Z exp (—v(zj — :c;)2) , (7)
j=1

where z; and :E; are two different observations’ values for predictor j, and
p is the number of predictors in X.?! Because the computations begin with
differences, which after being transformed are added together, the calcu-
lations are linear when d = 1, and one has a linear (additive) similarity

20Thus there are only (];7) — N computations to construct K.

21The computational translation is a little tricky. Here are the steps to compute K: (1)
for observations ¢ and j do an element by element subtraction over each of the predictors;
(2) square each of the differences; (3) multiply each of these squared differences by minus
v; (4) exponentiate each of these products; (5) sum the exponentiated products; (6) raise
the sum to the power of d; and (7) Repeat steps 1-6 for all pairs of observations 4,j to
compute all N x N entries in K.
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formulation. When d = 2, one has a formulation with products that can
be seen as two-way interactions and a squared similarity formulation. By
the same reasoning, when d = 3, one has three-way interactions and a cubic
similarity formulation.?? The result here for v = .01, and d = 2 is

25.00 22.88 12.16
K= | 228 2500 2441 |. (8)
22.16 24.41 25.00

The value of d is commonly set at 1, 2, or 3. In our experience, using
2 or 3 seems to work well in practice. The values for + are generally far
more important and much more difficult to determine. With larger values
of v, the off-diagonal values of K become smaller. Their different Euclidian
distances are reduced. In a regression setting, this will make the support
from transformed predictor matrix more localized so that more complex
relationships with the response variable can be captured. In the language
of smoothers, a smaller window (or band width) is being used.
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Figure 2: A Simulation of How Fitted Values Depend on the Value of ~

Figure 2 illustrates these points. The figure is a conventional scatterplot

22To take a simple example, suppose there are three predictors. For the pair of ob-
servations from the first and second row of X with v+ = 1 and d = 1, the sum of
differences is exp (—(wll — $12)2) + exp (—(3312 — .2322)2) + exp (—(xlg — xgg)Q)A This is
linear and additive. For d = 2, the result is [exp (—(zn — m12)2) + exp (—(1’12 — x22)2) +
exp (—(a:13 —x23)2)]2. All of the terms are now products of two variables, which
are two-way interaction effects. For d = 3, the result is [exp (—(wu — wlz)z) +
exp (—(.’1712 — x22)2) + exp (—(mlg — x23)2)}3. All of the terms are now products of three
variables, which are three-way interaction effects.
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showing the results of a simulation in which the fitted values from a simple
kernel regression depend on the value of . To help make the plot more
visually instructive, both the response and single predictor are quantitative.
For the same reason, we use a rectangular predictor distribution so there is
no significant data sparsity, and the response is highly nonlinear function of
the predictor.

In this simulation, d = 1 because there is only one regressor (no inter-
actions are possible), and the fit is quite good when v = 3. For a v of 0.5,
the fitted values are far too smooth. Important patterns are not captured,
although there is much less variance to contend with. For a -+ of 500, the
fitted values are much too rough. Patterns are captured that are dominated
by noise.

There is a lot going on beneath the surface. The K constructed for
the simulation is not a conventional covariance matrix nor a conventional
smoother matrix, and nowhere are the predictors in X or the linear basis
expansions ®(X) explicitly represented. We will see that this all makes
sense because of the “kernel trick” in which K = & (X)® (X)'. In the
next several pages, we summarize the reasoning.

How the Kernel Works for Regression

Broadly stated, the operational procedures for the kernel-based forecasting
procedures we apply are relatively straightforward. The set of predictors is
transformed using an ANOVA kernel. Principle components analysis is ap-
plied to the kernel. Then, logistic regression is implemented using a subset of
the principle components as regressors. The process of kernel construction,
principle component analysis and logistic regression is repeated a number of
times with different tuning parameters for the kernel and different subsets
of principle components. Using out-of-sample performance, a “best” logistic
regression forecasting model is selected.

Beneath these operational steps, however, there are many details and
a substantial statistical foundation that provides a rigorous rationale. A
technical treatment available in Appendix C. The first subsection addresses
the data generation mechanism, which is “assumption lean” compared to
conventional regression, which is “assumption laden” (Buja et al., 2014).
This background is necessary to understand what a forecast is estimating.
The second subsection considers regularization that is needed to reduce the
number of columns of ®(X). The problem for regression applications is that
the number of expansion terms can be equal to or larger than the number
of observations. Principle components analysis provides a solution. The
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third subsection introduces the “kernel trick” that allows the regularization
to proceed even though ®(X) is not known. As already noted, the trick
depends on K = ®(X)®(X)", and ® (X)® (X)' differs fundamentally
from ® (X)' ®(X). The fourth discusses how the relative costs of fore-
casting errors are properly introduced in classification exercises. The fifth
examines the role of tuning parameters and how to obtain valid statistical
inference along with honest measures of regression performance.

Appendix C — A More Formal Treatment of Kernel
Principle Components Regression

Principle Components and the Kernel Trick

Using subset of principle components (PCs) as regressors is an old regres-
sion story (see Hastie et al., 2009: Section 3.5.1), commonly motivated by
unacceptably high multicollinearity among the predictors. An N X p matrix
of predictors is transformed into an N X p matrix of PCs that are orthogonal
by construction and thereby uncorrelated with one another. The complete
set of p PCs account for all of the variance in the matrix of predictors. The
PCs employed in the regression as predictors are then a subset of the p
PCs. Often they are a small subset because a small fraction of the PCs can
account for most of the variance in the original predictor matrix.

Using a subset of PCs is a form of reqularization because the fitted values
will be less variable than had a larger number of PCs been used. One hopes
to introduce only a small amount of bias into estimates of the fitted values
for a large reduction in the fitted values’ variances. We build on these ideas
for kernel principle components regression (KPCR). There is a lot of detail,
but we provide a summary near the end.

There are N data vectors xq,...,xny € RP, each with dimension 1 X p.
For our application in Section 3, these vectors correspond to the character-
istics of the individual offenders, such as age and number of prior jail terms.
As a simple running example to illustrate the conceptual material, suppose
that each offender has three covariates: age, number of prior jail terms, and
number of drug prior charges (p = 3).

Imagine there is a function ® : R? — RY that transforms x into ® (x), a
set of ¢ basis terms with ¢ > p. Often, ¢ is larger than IV, and possibly even
be infinite. As we explain shortly, this function ® need not be explicitly
specified or even known, but we have already used for simple illustrative
purposes computing polynomial powers of the predictors. If, for instance,
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® expanded the original covariate vectors to include all polynomial terms
up to cubic terms for each of the p = 3 predictors, then ¢ would be 9. The
vector @ (z) would contain terms such as age, age?, and age3. Therefore, ®
has expanded the number of predictors available for a regression problem
and introduced the flexibility to fit nonlinearities.

Recall that the sample covariance matrix of the data matrix X can be
defined as:?

C'= (X - X)"(X - X) (9)
where X is the matrix of sample averages duplicated over columns so that
X — X is “centered” i.e. each column’s average is 0. The p x p matrix C’
is commonly the input matrix for principle components analysis (PCA).

In kernel regression, the linear expanded basis ® (X)) is used as the
predictor matrix. Its sample covariance matrix is:

O = (@ (X) ~3(X))T(#(X) - (X)) = 1 (X) &(X).  (10)

where ® (X) is the matrix of expanded bases and is centered analogously

to X — X. It is important to note the C' is not the kernel matrix. It is the
sample covariance matrix across the expanded set of predictors.

PCA as Eigendecomposition

In order to carry out PCA, one first computes the eigendecomposition of
the matrix portion of C given as

T /\1 ’U;r
P(X) &(X)=VAV' =[v;...0]] : (11)

-
Ag v,

-
where the v’s are the ¢ x 1 eigenvectors of ® (X) & (X)) joined column-wise

into the matrix V', and the \’s are the corresponding eigenvalues (which are
non-negative) that form the diagonal of the matrix A. By convention, the
eigenvalues are sorted in decreasing order, and their eigenvectors follow suit

23This is the maximum likelihood estimate of the covariance matrix, not the usual
unbiased estimate using 1/(N — 1),
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when packed into V. Recall that as a consequence of eigendecomposition,
each of the eigenvectors are mutually orthogonal.?*

Without loss of generality, we consider the orthonormal set of eigenvec-
tors V', which are obtained by rescaling each eigenvector by the reciprocal
of its norm vy, + (37, v,%’i)*lmvk).

Note that with N data points, the matrix ® (X)TCP (X)) can be at most

rank N (it can be less than N, but for simplicity, we assume it is exactly
rank V). Thus, when ¢ > N, we only need consider the first N eigenvectors
because the eigenvalues of the remaining ¢ — N eigenvalues will all be 0. It
follows that Equation 11 can be rewritten as

)\1 ’UI
d(X) ®(X)=[vy...vn] |l =vAvT. (12
AN v}

In standard principle components regression, it is conventional to com-
pute the eigenvalues normalized by their sum, A, = A/ Zj\f: 1 Aj. This
results in the convenient interpretation that each of the A}’s represent the
percentage of variation explained by the kth most important dimension. Be-
cause the \’s are sorted from high to low, the first eigenvector v represents
the “most important” dimension, the second eigenvector vo represent the
second most important dimension, and so on. One can decide from the cu-
mulative sum of the A}’s how many eigenvectors (and thereby PCs) should
be used in the subsequent analysis. Earlier, we used p to denote this cumu-
lative sum. A p of 90% means that the number of PCs retained for later use
“accounted for” 90% of the variance of the covariance matrix.

However, in KPCR for logistic regression, instead of selecting a number
of PCs directly using solely the value of p, one proceeds in a three step
process that begins by trying to match the validation data cost ratio as
closely as possible the desired cost ratio. (See Section 4.5.) In KPCR for
a numerical response variable, there is no cost ratio to approximate and
selection depends on the lowest out-of-sample squared error in the validation
data (not shown in this paper).

After deciding to employ the first  eigenvectors, one must transform each
observation in the expanded space ®(x1),...,®(x,). All were 1 X g vectors

24V is ¢ x N, so that each row represents an expansion term and each column represents
an observation. A is N x N. The covariance matrix can be expressed as a simple function
of its eigenvalues and eigenvectors.
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in «f,..., 2, after being expanded. With the application of PCA, the di-
mension can be reduced to 1 X r vectors by a transformation that eliminates
the minor ¢ — r dimensions. How does one accomplish this transformation?
Some straightforward linear algebra shows that orthogonal projection onto
a vector vy, is given by

p =2 (X) v (13)

The notation X, (without the “®(-)”) is used to indicate that this is the kth
column of the new regressor matrix, or kth PC arrived at through projection
of ® (X)) onto the subset of eigenvectors of the expanded basis. The new
regressor matrix can be used in linear model in the same way that the
original regressor matrix X was used.?’

However, this procedure only works if one can calculate V. That creates
a serious problem because one can only calculate V' if ® (X)) is known, and
the transformation ® is unknown. Fortunately, the “kernel trick” permits
recovery of X’ without knowledge of ®.

The Singular Value Decomposition and the Kernel Trick

Consider the usual singular value decomposition (SVD) that is a tripartite
decomposition valid for any matrix. Applying the SVD, our expanded bases

matrix can be decomposed into ¢ (X) = UAY?VT | where V is as above;

T —~—

it is the matrix of the column-wise eigenvectors of ® (X) & (X)) sorted in
decreasing eigenvalue order and becomes size ¢ X N after dropping the di-
mensions associated with an eigenvalue of zero. A also is as above, implying

that the middle matrix in the SVD is diagonal and is composed of the square
T

roots of the eigenvalues. U is the matrix of the eigenvectors of ® (X )® (X)
likewise sorted in decreasing eigenvalue order and is N x N.
In Section 3.2 we called K = ® (X)® (X)' the “kernel matrix.” Here,

— T

we call K = ® (X)®(X) the “centered kernel matrix.”?% Simple linear
algebra shows that they are related via

25 After taking the transposes, ’UZ is 1 x g, and (X)T is ¢ X N. The projected values
for the kth column of the new regressor matrix are the N linear combinations of expansion
terms of ®(X), each weighted the kth eigenvector values. They have some of the look and
feel of regression fitted values.

26This is achieved implicitly by centering the kernel matrix K to K = K — 1nK —
K1y +1nyK1, where 1y is an N x N matrix of elements 1/N. the centering is need so
that different means across predictors do not dominate the results.
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— 1 1 1
K=K-—JyK — —KJyn + —
NN NN T

where Jy represents a N X N matrix with all entries being 1. Another
property of SVD is that K has the same eigenvalues as A.
Additionally, SVD makes V' an orthonormal basis for the rowspace of

P

¢ (X) and U an orthonormal basis for the column space of ® (X). They
are related via

INKJ,, (14)

P

T
0] (X)’Uk =/ )\kuk and @ (X) U =/ Akvk. (15)
Thus, an arbitrary eigenvector vy can be written as

1 B

\/—Tku;@ (X). (16)

Finally, one has the solution for not having V. One can project ®(X)
onto the s-dimensional subset of V' despite being unable to construct V
explicitly. This is the key step in kernel regression and is somewhat coun-
terintuitive.

The projected X of ®(X) onto the kth eigenvector vy is given by
Equation 13. We now substitute Equation 16, which we learned from the
SVD, into the projection formula to arrive at

vy =

X7 — o] ®(X) = <1u;q>/(xv)> 5(X) - LWk, (7

vk VA&

Equation 17 employs the kernel trick (the equivalence of the outer product
in the centered expanded bases with the centered kernel matrix).

A Summary

In summary, one considers the eigenvalues A, which are calculated via

the eigendecomposition of K (because it shares the same eigenvalues as
T

¢ (X) ®(X)). One then picks the first » < N eigenvectors to form a sub-
space that explains a large enough percentage of the variance in C. Then
® (X)) is rotated onto this lower dimensional space to obtain the new re-
gressor matrix X', Taking the transpose of Equation 17 and absorbing the
1/v/Ax into U?", one arrives at the simple

27Scaling predictors will not affect fitted values in a linear model. Moreover, the columns
of X' are generally uninterpretable and are not an inferential target.
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X' = KU, ,, (18)

where the U;_, denotes the first © columns of the full U matrix.?8

Forecasting for New Cases

Fitted values then follow as usual via ordinary least squares or logistic re-
gression, and with each new a* for which one wishes to obtain a forecast.
But one must first recapitulate the steps that that transform the original re-
gressors into the principle components used in the logistic regression. That
is, * must transformed into ®(x*) then rotated onto the selected v ... v,
chosen during the modeling phase. Following Equation 13, one obtains
m?c*—r = 'U;—q)(ac*)—r. The kernel trick is then used to resolve vy, in the style of
Equation 16. Again absorbing the eigenvalue constants into U, transposing

as in Equation 18 and generalizing for all  dimensions, the result is

" = K(z*, XUy, (19)

where the function ﬁ(w*,X ) is a function that returns the 1 x N vector
of the kernel evaluated between x* and all x1,...,xy and then centered.
Following Equation 14, it can be shown that

K(z*, X) = K(z*, X) — %1}1{ - %K(m*, X)1y1k + <A1]21}K1N) 1!
where 1 is the n x 1 vector of all 1’s. Finally, to get a prediction for &*, we
take the rotated ™ and use the slope estimates from the generalized linear
model in the usual fashion. Hence, computing a predicted value requires
not only the estimated regression coefficients, but also the original data
x1,...,xy and the kernel function as well. One cannot simply drop an «*
into the estimated logistic regression equation.

28/1? iIsNXxNand Uy, ,is N X r.
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